RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

        Masami Goto,Osamu Abe,Tosiaki Miyati,Hiroyuki Kabasawa,Hidemasa Takao,Naoto Hayashi,Tomomi Kurosu,Takeshi Iwatsubo,Fumio Yamashita,Hiroshi Matsuda,Harushi Mori,Akira Kunimatsu,Shigeki Aoki,Kenji Ino,K 대한영상의학회 2012 Korean Journal of Radiology Vol.13 No.4

        Objective: Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods: Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 x [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results: A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion: The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials. Objective: Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods: Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 x [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results: A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion: The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.

      • Similarity of Intracellular Signaling Toward Apoptosis Following UVB and UVC Irradiation

        Horikawa, Miwa,Matsuda, Naoki,Yoshida, Masahiro,Okumura, Yutaka,Watanabe, Masami,Mori, Toshio Korean Society of Photoscience 2002 Journal of Photosciences Vol.9 No.2

        UV irradiation activates various intracellular signaling pathways causing cell death in a DNA damage-dependent and an independent manner. As DNA photoproducts, major forms of DNA damage, are maximally formed by UV light at 260-nm, short wavelength UV (UVC) is more harmful than middle wavelength UV (UVB). However, the differences or similarities in responses of DNA damage-independent intracellular signaling molecules to UVB and UVC are not elucidated. We examined activation of signaling molecules towards apoptosis in normal human fibroblastic cells after irradiation with UVB or UVC at a dose generating the equal amount of DNA photoproducts. Both UVB and UVC induced transient phosphorylation of ERK and sustained phosphorylation of p38. Phosphorylation of p53 at Ser15 and at Ser392 residues were also observed, which were inhibited by a phosphoinositide 3-kinase inhibitor, wortmannin. In contrast, an antioxidant N-acetyl-cysteine and a p38 inhibitor SB203580 suppressed only Ser392 phosphorylation, suggesting that UV-induced oxidative stress and p38 activation were involved in the phosphorylation of this site. The apoptic signals such as mitochondrial cytochrome C release and annexin V binding were then observed. Overall, no difference was found in chronological responses of p53, MAPK, and apoptosis between UVB-irradiated and UVC-irradiated cells. These results suggested that DNA damage-independent intracellular signaling molecules similarly responded to UVB and UVC when the equal level of DNA photoproducts were generated.

      • KCI등재

        Development of the Inpatient Dignity Scale Through Studies in Japan, Singapore, and the United Kingdom

        Katsumasa Ota,Jukai Maeda,Ann Gallagher,Michiko Yahiro,Yukari Niimi,Moon F. Chan,Masami Matsuda 한국간호과학회 2019 Asian Nursing Research Vol.13 No.1

        Purpose: The importance of human dignity in care is well-recognized. Care recipients' experiences with undignified care have been reported in many countries. However, few studies have measured these situations quantitatively, especially as there are no tools applicable to inpatients receiving ordinary daily care. This study aimed to develop a valid and reliable Inpatient Dignity Scale (IPDS) that can measure inpatients' expectations of and satisfaction with dignity in daily care. Methods: We conducted a three-phase research project: item generation and a preliminary survey with 47 items related to patients' dignity in Japan, a main survey with 36 items with deliberate translation into English in Singapore, and a confirmatory survey with 35 items in England, with 442, 430, and 500 inpatients as participants in questionnaire surveys, respectively. Data from each survey were processed using factor analysis. Results: Authors obtained a scale with a four-factor structure with acceptable reliability: (F1) respect as a human being, (F2) respect for personal feelings and time, (F3) respect for privacy, and (F4) respect for autonomy. Conclusion: The Inpatient Dignity Scale can be periodically used by hospital administrators or nurses to preserve inpatients' dignity in daily care by monitoring inpatients' views regarding their expectations of and satisfaction with dignity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼