RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        EXPERIMENTAL POOL BOILING HEAT TRANSFER STUDY OF THE NANOPOROUS COATING IN VARIOUS FLUIDS

        곽상묵,MIGUEL AMAYA,SEUNG M. YOU 대한설비공학회 2012 International Journal Of Air-Conditioning and Refr Vol.20 No.1

        An experimental pool boiling study was conducted using plain and nanoporous coated heater surfaces immersed in various working fluids: water, ethanol and HFE-7100. Pool boiling tests were performed on flat 1 cm × 1 cm heaters. Unlike in water, the critical heat flux (CHF) enhancement of the nanoporous coating seems to be less or marginal in ethanol and HFE-7100 at 1 atm. The reduced effect of the nanoporous coating in ethanol and HFE-7100 is believed to be due to the highly wetting nature of these fluids since no obvious difference in wettability is observed between nanoporous coated and uncoated surfaces through apparent contact angle measurement. Moreover, pressure effects were also investigated for the fluids mentioned above. For the nanoporous coated surface, CHF enhancement of the nanoporous coating appeared to be dependent on the test pressure, showing greater CHF enhancement at lower pressure. It is believed that this pressure dependent CHF enhancement behavior could be closely related to the bubble departure diameter. As pressure lowers, the departure bubble size increases and this allows the nanoporous coating to become more influential, even for the highly wetting fluids, in delaying local dry-out, which in turn results in increasing CHF enhancement.

      • KCI등재

        EFFECT OF SOLUBLE ADDITIVES, BORIC ACID (H_3BO_3) AND SALT (NaCl), IN POOL BOILING HEAT TRANSFER

        곽상묵,MIGUEL AMAYA,HYEJIN MOON,SEUNG M. YOU 한국원자력학회 2011 Nuclear Engineering and Technology Vol.43 No.3

        The effects on pool boiling heat transfer of aqueous solutions of boric acid (H_3BO_3) and sodium chloride (NaCl) as working fluids have been studied. Borated and NaCl water were prepared by dissolving 0.5~5% volume concentration of boric acid and NaCl in distilled-deionized water. The pool boiling tests were conducted using 1 x 1 cm2 flat heaters at 1 atm. The critical heat flux (CHF) dramatically increased compared to boiling pure water. At the end of boiling tests it was observed that particles of boric acid and NaCl had deposited and formed a coating on the heater surface. The CHF enhancement and surface modification during boiling tests were very similar to those obtained from boiling with nanofluids. Additional experiments were carried out to investigate the reliability of the additives deposition in pure water. The boric acid and NaCl coatings disappeared after repeated boiling tests on the same surface due to the soluble nature of the coatings, thus CHF enhancement no longer existed. These results demonstrate that not only insoluble nanoparticles but also soluble salts can be deposited during boiling process and the deposited layer is solely responsible for significant CHF enhancement.

      • KCI등재

        A REVIEW OF ENHANCEMENT OF BOILING HEAT TRANSFER THROUGH NANOFLUIDS AND NANOPARTICLE COATINGS

        You, Seung-M.,Amaya, Miguel,Kwark, Sang-M. The Society of Air-Conditioning and Refrigerating 2010 International Journal Of Air-Conditioning and Refr Vol.18 No.4

        This review traces the development of nanofluid pool boiling from its beginning (1984) to the present through a sampling of studies that have interested the authors and which have led to the latest findings at the University of Texas at Arlington (UTA). The studies of thermophysical properties of nanofluids are briefly covered. Several works in the last 7 years are highlighted to illustrate the modes of nanofluid pool boiling testing, the variability of nanofluid boiling heat transfer (BHT), and the postulations of causes of this behavior. Starting in 2006, the wettability increase in the nanoparticle coating, generated during the nanofluid pool boiling, is recognized as the source of critical heat flux (CHF) enhancement through its effect on the dynamics of hot spots and departing bubbles. The reasons for the observed contradictory BHT behavior are not yet fully clear, but recently at UTA, nanofluid boiling heat transfer has shown to be transient due to the dynamic nature of the formation of the nanoparticle coating. Also at UTA, the mechanism of nanoparticle deposition on the heated surface has been further confirmed. Thus, nanofluid boiling has led back to heat transfer enhancement through surface modification in nanoscale. These developments from 2006 are covered in more detail.

      • KCI등재

        Dietary Fiber, Gut Peptides, and Adipocytokines

        David Sa´nchez,Marta Miguel,Amaya Aleixandre 한국식품영양과학회 2012 Journal of medicinal food Vol.15 No.3

        The consumption of dietary fiber (DF) has increased since it was related to the prevention of a range of illnesses and pathological conditions. DF can modify some gut hormones that regulate satiety and energy intake, thus also affecting lipid metabolism and energy expenditure. Among these gut hormones are ghrelin, glucagon-like peptide 1, peptide YY, and cholecystokinin. Adipose tissue is known to express and secrete a variety of products known as ‘‘adipocytokines,’’which are also affected by DF. Some of the most relevant adipocytokines include adiponectin, leptin, tumor necrosis factor-a,and interleukin-6. The release of adipocytokines, by either adipocytes or macrophage-infiltrated adipose tissue, leads to a chronic subinflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes,therefore increasing the risk of cardiovascular disease associated with obesity. DF modulation of these molecules could also have positive effects on obesity, insulin resistance, and hyperlipidemia. This review is focused on the effects of DF on the above-mentioned gut peptides and adipocytokines.

      • SCIESCOPUSKCI등재

        EFFECT OF SOLUBLE ADDITIVES, BORIC ACID (H<sub>3</sub>BO<sub>3</sub>) AND SALT (NaCl), IN POOL BOILING HEAT TRANSFER

        Kwark, Sang-M.,Amaya, Miguel,Moon, Hye-Jin,You, Seung-M. Korean Nuclear Society 2011 Nuclear Engineering and Technology Vol.43 No.3

        The effects on pool boiling heat transfer of aqueous solutions of boric acid ($H_3BO_3$) and sodium chloride (NaCl) as working fluids have been studied. Borated and NaCl water were prepared by dissolving 0.5~5% volume concentration of boric acid and NaCl in distilled-deionized water. The pool boiling tests were conducted using $1{\times}1\;cm^2$ flat heaters at 1 atm. The critical heat flux (CHF) dramatically increased compared to boiling pure water. At the end of boiling tests it was observed that particles of boric acid and NaCl had deposited and formed a coating on the heater surface. The CHF enhancement and surface modification during boiling tests were very similar to those obtained from boiling with nanofluids. Additional experiments were carried out to investigate the reliability of the additives deposition in pure water. The boric acid and NaCl coatings disappeared after repeated boiling tests on the same surface due to the soluble nature of the coatings, thus CHF enhancement no longer existed. These results demonstrate that not only insoluble nanoparticles but also soluble salts can be deposited during boiling process and the deposited layer is solely responsible for significant CHF enhancement.

      • KCI등재

        A REVIEW OF ENHANCEMENT OF BOILING HEAT TRANSFER THROUGH NANOFLUIDS AND NANOPARTICLE COATINGS

        SEUNG M. YOU,MIGUEL AMAYA,곽상묵 대한설비공학회 2010 International Journal Of Air-Conditioning and Refr Vol.18 No.4

        This review traces the development of nanofluid pool boiling from its beginning (1984) to the present through a sampling of studies that have interested the authors and which have led to the latest findings at the University of Texas at Arlington (UTA). The studies of thermophysical properties of nanofluids are briefly covered. Several works in the last 7 years are highlighted to illustrate the modes of nanofluid pool boiling testing, the variability of nanofluid boiling heat transfer (BHT), and the postulations of causes of this behavior. Starting in 2006, the wettability increase in the nanoparticle coating, generated during the nanofluid pool boiling, is recognized as the source of critical heat flux (CHF) enhancement through its effect on the dynamics of hot spots and departing bubbles. The reasons for the observed contradictory BHT behavior are not yet fully clear, but recently at UTA, nanofluid boiling heat transfer has shown to be transient due to the dynamic nature of the formation of the nanoparticle coating. Also at UTA, the mechanism of nanoparticle deposition on the heated surface has been further confirmed. Thus, nanofluid boiling has led back to heat transfer enhancement through surface modification in nanoscale. These developments from 2006 are covered in more detail.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼