RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Histopathological assessment of laterality defects in zebrafish development

        Md. Ashraf Uddin Chowdhury,Ahmed A. Raslan,이은혜,엄준용,황병준,권승해,기윤 한국통합생물학회 2021 Animal cells and systems Vol.25 No.3

        Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.

      • KCI등재

        UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures

        Mohammed Ashraf Uddin,Bupasha Hekim Sutonu,Malik Abdul Rub,Shamim Mahbub,Maha Moteb Alotaibi,Abdullah M. Asiri,Shahed Rana,Md. Anamul Hoque,Mahbub Kabir 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.3

        Ciprofloxacin hydrochloride (CPFH) is a very common antibiotic drug for the treatment of different types of bacterial infections. The activity of the drug depends on the complexation of the employed drug with different metals present in the body. In the current investigation, the complexation behavior of CPFH drug with numerous metal ions was explored by means of UV-Visible spectroscopic and density functional theory (DFT) techniques at various temperatures. The binding constants (Kf) of CPFH+metal ions complexes were determined from the Benesi-Hildebrand equation. The Kf values experience an alteration with the nature of metal ions employed and the change of temperature. The binding of CPFH with alkali earth metals decreases with the increase of metal size and increases with the increase of temperature, while the opposite effect of temperature was observed for transition metals. The Gibbs free energy of binding (Go) for the complexation between CPFH and metal ions was negative in all cases, which reveals that the complexation phenomenon is spontaneous. The values of enthalpy and entropy connote the presence of both hydrophobic and electrostatic interactions. The complexation of CPFH was observed to be endothermic in the case of alkali earth metals while exothermic for transition metals. The intrinsic enthalpy gain (Ho, *) values signify the higher stability of metal-drug complexes. The compensation temperature (TC) values were found to be comparable to the biological systems. DFT studies show the formulation of 1 : 1 complexes with transition metals as well as the square planar geometry of the complexes. HOMO and LUMO analyses reveal that the stability of CPFH-Ni complexes is higher than that of CPFH-Co/CPFH-Zn complexes.

      • KCI등재

        LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

        MUHAMMAD SAIFUL ISLAM MALLIK,MD. ASHRAF UDDIN 한국산업응용수학회 2016 Journal of the Korean Society for Industrial and A Vol.20 No.1

        A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge–Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, Reτ = 590 based on the channel half width, δ and wall shear velocity, uτ. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of 2πδ×2δ×πδ with 32×20×32 grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

      • KCI등재

        High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode

        Mushfika Baishakhi Upama,Matthew Wright,Naveen Kumar Elumalai,Md Arafat Mahmud,Dian Wang,Kah Howe Chan,Cheng Xu,Faiazul Haque,Ashraf Uddin 한국물리학회 2017 Current Applied Physics Vol.17 No.2

        Semitransparent organic solar cells are a promising approach to smart window applications and building integration. Here, we demonstrate a high performance semitransparent organic solar cell that incorporates the low bandgap polymer, PTB7, in the photoactive layer and a simple, non-patterned Dielectric/Metal/Dielectric or D/M/D anode (MoO3/Ag/MoO3). The combination of excellent photovoltaic properties of PTB7:PC71BM based solar cell and transparency of the MoO3/Ag/MoO3 anode resulted in an impressive power conversion efficiency of 5% at 18.3% visible light transmission. By tuning the active layer and outer MoO3 layer thicknesses, devices with ~25% average visible transmission were fabricated, which is considered as a benchmark transmittance for window applications. Transfer matrix modelling (TMM) was used to optimise the active layer and electrode thickness in terms of the optical field in the active layer. Additionally, the color rendering ability was found to be dependent on the active layer thickness, as well as the electrode. Device properties were studied from the perspectives of color rendering property, photovoltaic performance and theoretical optical field distribution.

      • 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy

        Eum, Juneyong,Kwak, Jina,Kim, Hee Joung,Ki, Seoyoung,Lee, Kooyeon,Raslan, Ahmed A.,Park, Ok Kyu,Chowdhury, Md Ashraf Uddin,Her, Song,Kee, Yun,Kwon, Seung-Hae,Hwang, Byung Joon MDPI 2016 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.17 No.11

        <P>Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼