RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

        Yun Zhang,Yongping Gao,Jing Li,Mark Sumner,Ping Wang,Lei Zhou 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.6

        In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

      • SCIESCOPUSKCI등재

        High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

        Zhang, Yun,Gao, Yongping,Li, Jing,Sumner, Mark,Wang, Ping,Zhou, Lei The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.6

        In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

      • KCI등재

        Effect of Homogenization Temperature on Microstructure and Mechanical Properties of Low-Carbon High-Boron Cast Steel

        Fu Hanguang,Song Xuding,Lei Yongping,Jiang Zhiqiang,Xing Jiandong,Yang Jun,Wang Jinhua 대한금속·재료학회 2009 METALS AND MATERIALS International Vol.15 No.3

        The effects of quenching treatment on the microstructure, hardness, impact toughness, and wear resistance of low-carbon high-boron cast steel (LCHBS) containing 0.15-0.3 %C, 1.4-1.8 %B, 0.3-0.8 %Si, 0.8-1.2 %Mn, 0.5-0.8%Cr, 0.3-0.6%Ni, and 0.3-0.6%Mo have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and via an electron probe microanalyzer (EPMA), X-ray diffraction (XRD) analysis, impact tester, hardness tester, and wear tester. The as-cast matrix of LCHBS consists of pearlite and ferrite. There is 8-10 vol.% Fe2(B, C) type borocarbides in the matrix. The micro-hardness of Fe2(B, C) is 1430-1480 Hv. Fe2(B,C) shows no obvious change and the matrix completely transforms into lath martensite upon quenching at 900 °C to 1100 °C. The microhardness of the matrix and the macrohardness of the LCHBS sample show a slight increase with an increase of homogenization temperature. When the homogenization temperature exceeds 1050 °C, no distinct change in the hardness is observed. The change of homogenization temperature has no apparent effect on the impact toughness of LCHBS. The mass losses of LCHBS increase distinctly when the wear load increases. The homogenization temperature is less than 1000 °C and the wear rate of LCHBS decreases with an increase of temperature. The wear rate does not display any obvious change after exceeding a homogenization temperature of 1000 °C. The effects of quenching treatment on the microstructure, hardness, impact toughness, and wear resistance of low-carbon high-boron cast steel (LCHBS) containing 0.15-0.3 %C, 1.4-1.8 %B, 0.3-0.8 %Si, 0.8-1.2 %Mn, 0.5-0.8%Cr, 0.3-0.6%Ni, and 0.3-0.6%Mo have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and via an electron probe microanalyzer (EPMA), X-ray diffraction (XRD) analysis, impact tester, hardness tester, and wear tester. The as-cast matrix of LCHBS consists of pearlite and ferrite. There is 8-10 vol.% Fe2(B, C) type borocarbides in the matrix. The micro-hardness of Fe2(B, C) is 1430-1480 Hv. Fe2(B,C) shows no obvious change and the matrix completely transforms into lath martensite upon quenching at 900 °C to 1100 °C. The microhardness of the matrix and the macrohardness of the LCHBS sample show a slight increase with an increase of homogenization temperature. When the homogenization temperature exceeds 1050 °C, no distinct change in the hardness is observed. The change of homogenization temperature has no apparent effect on the impact toughness of LCHBS. The mass losses of LCHBS increase distinctly when the wear load increases. The homogenization temperature is less than 1000 °C and the wear rate of LCHBS decreases with an increase of temperature. The wear rate does not display any obvious change after exceeding a homogenization temperature of 1000 °C.

      • KCI등재

        Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

        Feng Gang,Lin Jian,Yang Shuai,Zhang Boxuan,Wang Jiangang,Yang Jia,Xu Zhongfeng,Lei Yongping 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.11

        Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanst¨atten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼