RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Homogenization Temperature on Microstructure and Mechanical Properties of Low-Carbon High-Boron Cast Steel

        Fu Hanguang,Song Xuding,Lei Yongping,Jiang Zhiqiang,Xing Jiandong,Yang Jun,Wang Jinhua 대한금속·재료학회 2009 METALS AND MATERIALS International Vol.15 No.3

        The effects of quenching treatment on the microstructure, hardness, impact toughness, and wear resistance of low-carbon high-boron cast steel (LCHBS) containing 0.15-0.3 %C, 1.4-1.8 %B, 0.3-0.8 %Si, 0.8-1.2 %Mn, 0.5-0.8%Cr, 0.3-0.6%Ni, and 0.3-0.6%Mo have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and via an electron probe microanalyzer (EPMA), X-ray diffraction (XRD) analysis, impact tester, hardness tester, and wear tester. The as-cast matrix of LCHBS consists of pearlite and ferrite. There is 8-10 vol.% Fe2(B, C) type borocarbides in the matrix. The micro-hardness of Fe2(B, C) is 1430-1480 Hv. Fe2(B,C) shows no obvious change and the matrix completely transforms into lath martensite upon quenching at 900 °C to 1100 °C. The microhardness of the matrix and the macrohardness of the LCHBS sample show a slight increase with an increase of homogenization temperature. When the homogenization temperature exceeds 1050 °C, no distinct change in the hardness is observed. The change of homogenization temperature has no apparent effect on the impact toughness of LCHBS. The mass losses of LCHBS increase distinctly when the wear load increases. The homogenization temperature is less than 1000 °C and the wear rate of LCHBS decreases with an increase of temperature. The wear rate does not display any obvious change after exceeding a homogenization temperature of 1000 °C. The effects of quenching treatment on the microstructure, hardness, impact toughness, and wear resistance of low-carbon high-boron cast steel (LCHBS) containing 0.15-0.3 %C, 1.4-1.8 %B, 0.3-0.8 %Si, 0.8-1.2 %Mn, 0.5-0.8%Cr, 0.3-0.6%Ni, and 0.3-0.6%Mo have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and via an electron probe microanalyzer (EPMA), X-ray diffraction (XRD) analysis, impact tester, hardness tester, and wear tester. The as-cast matrix of LCHBS consists of pearlite and ferrite. There is 8-10 vol.% Fe2(B, C) type borocarbides in the matrix. The micro-hardness of Fe2(B, C) is 1430-1480 Hv. Fe2(B,C) shows no obvious change and the matrix completely transforms into lath martensite upon quenching at 900 °C to 1100 °C. The microhardness of the matrix and the macrohardness of the LCHBS sample show a slight increase with an increase of homogenization temperature. When the homogenization temperature exceeds 1050 °C, no distinct change in the hardness is observed. The change of homogenization temperature has no apparent effect on the impact toughness of LCHBS. The mass losses of LCHBS increase distinctly when the wear load increases. The homogenization temperature is less than 1000 °C and the wear rate of LCHBS decreases with an increase of temperature. The wear rate does not display any obvious change after exceeding a homogenization temperature of 1000 °C.

      • KCI등재

        Microstructural Characterization and Properties of Al/Cu/Steel Diffusion Bonded Joints

        Cheng Xiaole,Gao Yimin,Fu Hanguang,Xing Jiandong,Bai Bingzhe 대한금속·재료학회 2010 METALS AND MATERIALS International Vol.16 No.4

        We prepared Al/Cu/steel composite with a gradient structure using a vacuum hot-pressed diffusion method and investigated the Al/Cu/steel interface. The results show that a supersaturated solid solution with a thickness of about 2 um formed in the Cu/steel diffusion zone. Two kinds of intermetallic compounds, Cu9Al4 adjacent to the Cu side and CuAl2 adjacent to the Al side, formed at the interface of the Al/Cu. The thickness of the intermetallic compound layer appeared to greatly affect conductivity and tensile strength. The conductivity and the tensile strength decreased from 36.9 MS/m to 24.2 MS/m, and from 70.9MPa to 40.7MPa, respectively,while the thickness increased from 3.5 um to 23 um. The fractures occurred between a supersaturated solid solution (Al in Cu) and Cu9Al4, or between Cu9Al4 and CuAl2.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼