RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Semi-Local Structure Patterns for Robust Face Detection

        Jeong, Kyungjoong,Choi, Jaesik,Jang, Gil-Jin IEEE Signal Processing Society 2015 IEEE signal processing letters Vol. No.

        <P>In many image processing and computer vision problems, including face detection, local structure patterns such as local binary patterns (LBP) and modified census transform (MCT) have been adopted in widespread applications due to their robustness against illumination changes. However, being reliant on the local differences between neighboring pixels, they are inevitably sensitive to noise. To overcome the problem of noise-vulnerability of the conventional local structure patterns, we propose semi-local structure patterns (SLSP), a novel feature extraction method based on local region-based differences. The SLSP is robust to illumination variations, distortion, and sparse noise because it encodes the relative sizes of the central region with locally neighboring regions into a binary code. The principle of SLSP leads noise-robust expansions of LBP and MCT feature extraction frameworks. In a statistical analysis, we find that the proposed methods transform a substantial amount of random noise patterns in face images into more meaningful uniform patterns. The empirical results on the <TEX>${\rm MIT} + {\rm CMU}$</TEX> dataset and FDDB (face detection dataset and benchmark) show that the proposed semi-local patterns applied to LBP and MCT feature extraction frameworks outperform the conventional LBP and MCT features in AdaBoost-based face detectors, with much higher detection rates.</P>

      • KCI등재

        얼굴정렬과 AdaBoost를 이용한 얼굴 표정 인식

        정경중(Kyungjoong Jeong),최재식(Jaesik Choi),장길진(Gil-Jin Jang) 대한전자공학회 2014 전자공학회논문지 Vol.51 No.11

        본 논문에서는 얼굴영상에 나타난 사람의 표정을 인식하기 위해 얼굴검출, 얼굴정렬, 얼굴단위 추출, 그리고 AdaBoost를 이용한 학습 방법과 효과적인 인식방법을 제안한다. 입력영상에서 얼굴 영역을 찾기 위해서 얼굴검출을 수행하고, 검출된 얼굴영상에 대하여 학습된 얼굴모델과 정렬(Face Alignment)을 수행한 후, 얼굴의 표정을 나타내는 단위요소(Facial Units)들을 추출한다. 본 논문에서 제안하는 얼굴 단위요소들을 표정을 표현하기 위한 기본적인 액션유닛(AU, Action Units)의 하위집합으로 눈썹, 눈, 코, 입 부분으로 나눠지며, 이러한 액션유닛에 대하여 AdaBoost 학습을 수행하여 표정을 인식한다. 얼굴유닛은 얼굴표정을 더욱 효율적으로 표현할 수 있고 학습 및 테스트에서 동작하는 시간을 줄여주기 때문에 실시간 응용분야에 적용하기 적합하다. 실험결과, 제안하는 표정인식 시스템은 실시간 환경에서 90% 이상의 우수한 성능을 보여준다. This paper suggests a facial expression recognition system using face detection, face alignment, facial unit extraction, and training and testing algorithms based on AdaBoost classifiers. First, we find face region by a face detector. From the results, face alignment algorithm extracts feature points. The facial units are from a subset of action units generated by combining the obtained feature points. The facial units are generally more effective for smaller-sized databases, and are able to represent the facial expressions more efficiently and reduce the computation time, and hence can be applied to real-time scenarios. Experimental results in real scenarios showed that the proposed system has an excellent performance over 90% recognition rates.

      • Fast Belief Propagation for Segmentation

        Sungchan Park,Kyungjoong Jeong,Hong Jeong 대한전자공학회 2007 ITC-CSCC :International Technical Conference on Ci Vol.2007 No.7

        For the segmentation, there are mainly typical cut and normalization cut among the graph based techniques which show good results due to the approximated global methods on the 2D MRF. Toward a real-time color image segmentation, we will present a high-speed and parallel fast belief propagation(FBP) algorithm which is based on the GBP’s typical cut method. At N by M 2D MRF image and T iterations, O(NMT) time complexity can be reduced to O(MT) with N Processors and it has a smaller distributed memory resources O(NT) than typical cut’s O(NM), due to the small T. With a linear systolic array structure, we can increase the computational speed by the cascaded parallel processors.

      • SCOPUSKCI등재
      • SCOPUSKCI등재

        Development of cryogenic free-piston reciprocating expander utilizing phase controller

        Cha, Jeongmin,Park, Jiho,Kim, Kyungjoong,Jeong, Sangkwon The Korea Institute of Applied Superconductivity a 2016 한국초전도저온공학회논문지 Vol.18 No.2

        A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼