RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bump 회로와 인접픽셀 기반의 이미지 신호 Edge Detector

        오광석(Kwang-Seok Oh),이상진(Sang-Jin Lee),조경록(Kyoungrok Cho) 대한전자공학회 2013 전자공학회논문지 Vol.50 No.7

        본 논문에서는 bump 회로를 이용한 하드웨어 기반의 윤곽선 검출 회로를 제안한다. 하나의 픽셀은 빛을 전기적인 신호로 변환하는 active pixel sensor (APS)와 주변 픽셀의 밝기 차이를 비교하는 bump회로로 구성된다. 제안하는 회로는 64x64의 이미지를 대상으로하며, 각 열(column)마다 비교기를 공유한다. 비교기는 외부에서 인가되는 기준전압을 통해 최종적으로 대상 픽셀의 윤곽선 여부를 판별한다. 또한 기존의 4개 혹은 그 이상의 픽셀 데이터를 비교하는 윤곽선 검출 알고리즘을 상대적으로 간소화하여 대상픽셀을 포함하여 3개의 픽셀만으로 윤곽선 검출을 가능토록 제안하였다. 따라서 하나의 픽셀에 비교적 적은 수의 트랜지스터로 구성하였다. 따라서 제한적인 픽셀 크기에서 fill factor를 충분히 확보함으로써 수용 가능한 조도의 범위를 확장하였고, 기준전압을 외부에서 입력 받기 때문에 윤곽선 레벨을 조절 할 수 있다. Bump 회로기반의 윤곽선 검출 회로는 0.18um CMOS 공정에서 설계되었으며, 1.8V의 공급전압에서 픽셀 당 0.9uW의 전력 소모율, 34%의 fill factor을 갖는다. 이는 기존회로대비 전력 소모율을 90% 개선하였고, 기존 회로에 비하여 면적은 약 18.7%, fill factor는 약 16%를 더 확보하였다. This paper presents a hardware edge detector of image signal at pixel level of CMOS image sensor (CIS). The circuit detects edges of an image based on a bump circuit combining with the pixels. The APS converts light into electrical signals and the bump circuit compares the brightness between the target pixel and its neighbor pixels. Each column on CIS 64 by 64 pixels array shares a comparator. The comparator decides a peak level of the target pixel comparing with a reference voltage. The proposed edge detector is implemented using 0.18um CMOS technology. The circuit shows higher fill factor 34% and power dissipation by 0.9uW per pixel at 1.8V supply.

      • Memristor-MOS analog correlator for pattern recognition system.

        Han, Ca-Ram,Lee, Sang-Jin,Oh, Kwang-Seok,Cho, Kyoungrok American Scientific Publishers 2013 Journal of Nanoscience and Nanotechnology Vol.13 No.5

        <P>Emergence of new materials having significant improved properties continues to influence the formulation of novel architectures and as such new developments pave the way for innovative circuits and systems such as those required in visual imaging and recognition systems. In this paper we introduce a novel approach for the design of an analog comparator suitable for pattern matching using two Memristors as part of both the stored image data as well as that of the input signal. Our proposed comparator based on Memristor-CMOS fabrication process generates a signal indicating similarity/dissimilarity between two pattern data derived from image sensor and the corresponding Memristor-based template memory. For convenience, we also present an overview of a simplified Memristor model and hence provide simulation results for comparison with that of a conventional analog CMOS comparator.</P>

      • KCI등재

        낸드플래시 메모리의 효율적인 ECC 패리티 저장 방법

        김석만(Seokman Kim),오민석(Minseok Oh),조경록(Kyoungrok Cho) 한국콘텐츠학회 2016 한국콘텐츠학회논문지 Vol.16 No.10

        본 논문은 ECC(error correcting code)의 오버헤드를 고려한 패리티의 저장 정책 및 그에 따른 낸드 플래시 메모리 컨트롤러의 구조를 제안한다. 일반적인 낸드 플래시 메모리의 용법은 데이터 영역과 스페어 영역을 분리하는 것이다. ECC 패리티는 낸드 플래시 메모리에 데이터가 입력될 때 생성된다. 일반적으로 ECC의 메시지 길이는 낸드 플래시 메모리의 한 페이지 보다 작기 때문에, 각 메시지의 패리티를 모두 모아 스페어 영역에 저장하게 된다. 읽기 동작 시에는 데이터 영역에 이어 스페어 영역의 ECC 패리티까지 모두 읽은 후에 ECC 처리를 통한 데이터 정정이 가능하다. 이 때 발생하는 오버헤드를 줄이기 위해 데이터/스페어 영역의 구분없이 ECC 처리된 데이터와 패리티를 연속으로 저장하는 분산형 정책을 사용하였다. 제안된 분산형 정책과 기존의 수집형 정책의 오버헤드를 설계적인 측면과 타이밍 측면으로 분석하고, 그에 맞는 낸드 플래시 메모리 컨트롤러의 구조를 제시한다. 페이지의 크기에 따른 액세스 시간을 시뮬레이션을 통해 분석한 결과, 읽기 동작 시, 분산형 정책의 액세스 시간이 수집형 정책에 비해 짧았고 페이지의 크기가 커질수록 감소율이 컸다. 실험에 사용된 16KB의 페이지 크기를 갖는 낸드 플래시 메모리의 경우 분산형 정책의 액세스 시간이 수집형 정책에 비해 13.6% 감소하였다. 이는 4GB 크기의 영상 파일을 읽을 때 약 1분가량의 시간이 단축되는 효과를 얻을 수 있다. 또한 읽기 동작이 많은 SSD(solid state drive)의 특성 상 전반적인 시스템의 성능 향상을 기대할 수 있다. This paper presents a new method of parity storing for ECC(error correcting code) in SSD(solid-state drive) and suitable structure of the controller. In general usage of NAND flash memory, we partition a page into data and spare area. ECC parity is stored in the spare area. The method has overhead on area and timing due to access of the page memory discontinuously. This paper proposes a new parity policy storing method that reduces overhead and R(read)/W(write) timing by using whole page area continuously without partitioning. We analyzed overhead and R/W timing. As a result, the proposed parity storing has 13.6% less read access time than the conventional parity policy with 16KB page size. For 4GB video file transfer, it has about a minute less than the conventional parity policy. It will enhance the system performance because the read operation is key function in SSD.

      • KCI등재

        아날로그 상관기와 인접픽셀 기반의 영상 윤곽선 검출기

        이상진(Sang-Jin Lee),오광석(Kwang-Seok Oh),남민호(Min-Ho Nam),조경록(Kyoungrok Cho) 한국콘텐츠학회 2013 한국콘텐츠학회논문지 Vol.13 No.10

        본 논문에서는 하드웨어 기반의 영상 신호 윤곽선 검출을 위한 하드웨어기반의 알고리즘으로 CMOS이미지 센서의 인접픽셀과 아날로그 상관기로 구성되는 윤곽선 검출기를 제안한다. 제안하는 이미지 윤곽 검출기는 각 열(column)마다 비교기를 공유하고 비교기는 기준전압과 비교를 통해 대상 픽셀의 윤곽선 여부를 판별한다. 이미지 센서와 직접적으로 연결된 윤곽선 검출회로는 기존의 연구와 비교하여 면적은 4배 그리고 전력소모는 20% 감소하는 결과를 보였다. 또한 외부에서 기준전압을 제어할 수 있어 윤곽선 검출의 민감도를 조절하기에 유용한 장점을 가진다. 0.18 μm CMOS 공정에서 제작된 칩은 34%의 fill factor를 가지며 픽셀당 0.9 μW의 전력소모를 가진다. This paper presents a simplified hardware based edge detection circuit which is based on an analog correlator combining with the neighbor pixels in CMOS image sensor. A pixel element of the edge detector consists of an active pixel sensor and an analog correlator circuit which connects two neighbor pixels. The edge detector shares a comparator on each column that the comparator decides an edge of the target pixel with an adjustable reference voltage. The circuit detects image edge from CIS directly that reduces area and power consumption 4 times and 20%, respectively, compared with the previous works. And also it has advantage to regulate sensitivity of the edge detection because the threshold value is able to control externally. The fabricated chip has 34% of fill factor and 0.9 μW of power per a pixel under 0.18 μm CMOS technology.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼