RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Hydrogen Storage in New Metal–Organic Frameworks

        Tranchemontagne, David J.,Park, Kyo Sung,Furukawa, Hiroyasu,Eckert, Juergen,Knobler, Carolyn B.,Yaghi, Omar M. American Chemical Society 2012 The Journal of Physical Chemistry Part C Vol.116 No.24

        <P>Five new metal–organic frameworks (MOFs, termed MOF-324, 325, 326 and IRMOF-61 and 62) of either short linkers (pyrazolecarboxylate and pyrazaboledicarboxylate) or long and thin alkyne functionalities (ethynyldibenzoate and butadiynedibenzoate) were prepared to examine their impact on hydrogen storage in MOFs. These compounds were characterized by single-crystal X-ray diffraction, and their low-pressure and high-pressure hydrogen uptake properties were investigated. In particular, volumetric excess H<SUB>2</SUB> uptake by MOF-324 and IRMOF-62 outperforms MOF-177 up to 30 bar. Inelastic neutron-scattering studies for MOF-324 also revealed strong interactions between the organic links and hydrogen, in contrast to MOF-5 where the interactions between the Zn<SUB>4</SUB>O unit and hydrogen are the strongest. These data also show that smaller pores and polarized linkers in MOFs are indeed advantageous for hydrogen storage.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpccck/2012/jpccck.2012.116.issue-24/jp302356q/production/images/medium/jp-2012-02356q_0008.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/jp302356q'>ACS Electronic Supporting Info</A></P>

      • Vertical Graphene Growth from Amorphous Carbon Films Using Oxidizing Gases

        Bachmatiuk, Alicja,Boeckl, John,Smith, Howard,Ibrahim, Imad,Gemming, Thomas,Oswald, Steffen,Kazmierczak, Wojciech,Makarov, Denys,Schmidt, Oliver G.,Eckert, Juergen,Fu, Lei,Rummeli, Mark H. American Chemical Society 2015 JOURNAL OF PHYSICAL CHEMISTRY C - Vol.119 No.31

        <P>Amorphous carbon thin films are technologically important materials that range in use from the semiconductor industry to corrosion-resistant films. Their conversion to crystalline graphene layers has long been pursued; however, typically this requires excessively high temperatures. Thus, crystallization routes which require reduced temperatures are important. Moreover, the ability to crystallize amorphous carbon at reduced temperatures without a catalyst could pave the way for practical graphene synthesis for device fabrication without the need for transfer or post-transfer gate deposition. To this end we demonstrate a practical and facile method to crystallize deposited amorphous carbon films to high quality graphene layers at reduced annealing temperatures by introducing oxidizing gases during the process. The reactive gases react with regions of higher strain (energy) in the system and accelerate the graphitization process by minimizing criss-cross-linkages and accelerating C–C bond rearrangement at defects. In other words, the movement of crystallite boundaries is accelerated along the carbon hexagon planes by removing obstacles for crystallite coalescence.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpccck/2015/jpccck.2015.119.issue-31/acs.jpcc.5b05167/production/images/medium/jp-2015-05167v_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/jp5b05167'>ACS Electronic Supporting Info</A></P>

      • Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition

        Pang, Jinbo,Bachmatiuk, Alicja,Fu, Lei,Yan, Chenglin,Zeng, Mengqi,Wang, Jiao,Trzebicka, Barbara,Gemming, Thomas,Eckert, Juergen,Rummeli, Mark H. American Chemical Society 2015 The Journal of Physical Chemistry Part C Vol.119 No.23

        <P>One of the more common routes to fabricate graphene is by chemical vapor deposition (CVD). This is primarily because of its potential to scale up the process and produce large area graphene. For the synthesis of large area monolayer Cu is probably the most popular substrate since it has a low carbon solubility enabling homogeneous single-layer sheets of graphene to form. This process requires a very clean substrate. In this work we look at the efficiency of common pretreatments such as etching or wiping with solvents and compare them to an oxidation treatment at 1025 °C followed by a reducing process by annealing in H<SUB>2</SUB>. The oxidation/reduction process is shown to be far more efficient allowing large area homogeneous single layer graphene formation without the presence of additional graphene flakes which form from organic contamination on the Cu surface.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpccck/2015/jpccck.2015.119.issue-23/acs.jpcc.5b03911/production/images/medium/jp-2015-03911k_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/jp5b03911'>ACS Electronic Supporting Info</A></P>

      • KCI등재

        Nanocomposite Magnetic Materials

        Ludwig Schultz,Alberto Bollero,Axel Handstein,Dietrich Hinz,Karl-Hartmut Muller,Golden Kumar,Juergen Eckert,Oliver Gutfleisch,Anke Kirehner Aru Yan The Korean Powder Metallurgy Institute 2002 한국분말재료학회지 (KPMI) Vol.9 No.6

        Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼