RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhanced luminescence of Tb3+ by efficient energy transfer from Ce3+ in Sr2B5O9Cl host

        Jiming Zheng,Chongfeng Guo,Xu Ding,Zhaoyu Ren,Jintao Bai 한국물리학회 2012 Current Applied Physics Vol.12 No.3

        Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4/7FJ (J ¼ 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipoleedipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.

      • KCI등재

        Anomalous Ferromagnetism and Electron Microscopy Characterization of High-Quality Neodymium Oxychlorides Nanocrystals

        Xinliang Zheng,Juan Feng,Jiarui Zhang,Hongna Xing,Jiming Zheng,Mingzi Wang,Yan Zong,Jintao Bai,Xinghua Li 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.3

        High-quality neodymium oxychlorides nanocrystals with cubic shape were synthesized by a nonhydrolytic thermolysis route. The morphology and crystal structure of the neodymium oxychlorides nanocubes were characterized by transmission electron microscopy at the nanoscale. Transmission electron microscope (TEM) image shows that the neodymium oxychlorides nanocrystals are nearly monodispersed with cube-like shape. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of numerous neodymium oxychlorides nanocubes suggest a pure crystal phase with tetragonal PbFCl matlockite structure. HRTEM image of individual neodymium oxychlorides nanocubes indicate that each nanocubes have a singlecrystalline nature with high quality. Unlike the anti-ferromagnetism of the bulk, the neodymium oxychlorides nanocubes show clearly anomalous ferromagnetic characteristic at room temperature. This finding provides a new platform for the exploration of diluted magnetic semiconductors, rare earth-based nanomaterials and so on.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼