RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Spectroscopic needs for imaging dark energy experiments

        Newman, J.A.,Abate, A.,Abdalla, F.B.,Allam, S.,Allen, S.W.,Ansari, R.,Bailey, S.,Barkhouse, W.A.,Beers, T.C.,Blanton, M.R.,Brodwin, M.,Brownstein, J.R.,Brunner, R.J.,Carrasco Kind, M.,Cervantes-Cota, North-Holland 2015 Astroparticle physics Vol.63 No.-

        Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes:*Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our ''training set'' of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments. Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%). Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (λ/Δλ>~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST. Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimi

      • KCI등재

        Boolean Approach to Dichotomic Quantum Measurement Theories

        K. Nagata,T. Nakamura,J. Batle,S. Abdalla,A. Farouk 한국물리학회 2017 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.70 No.3

        Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or −1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

      • SCIESCOPUS

        A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

        Abdalla, J.A.,Ibrahim, A.K. Techno-Press 2007 Structural Engineering and Mechanics, An Int'l Jou Vol.26 No.6

        In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

      • KCI등재후보

        Modeling of nonlinear response of R/C shear deficient t-beam subjected to cyclic loading

        R.A. Hawileh,M.H. Tanarslan,J. A. Abdalla 사단법인 한국계산역학회 2012 Computers and Concrete, An International Journal Vol.10 No.4

        This paper presents a finite element (FE) model for predicting the nonlinear response and behavior of a reinforced concrete T-beam deficient in shear under cyclic loading. Cracking loads, failure loads, response hysteresis envelopes and crack patterns were used as bench mark for comparison between experimental and FE results. A parametric study was carried out to predict the optimum combination of the open and close crack shear transfer coefficients (βt and βc) of the constitutive material model for concrete. It is concluded that when both shear transfer coefficients are equal to 0.2 the FE results gave the best correlation with the experimental results. The results were also verified on a rectangular shear deficient beam (R-beam) tested under cyclic loading and it is concluded that the variation of section geometry has no effect on the optimum choice of the values of shear transfer coefficients of 0.2. In addition, a parametric study based on the variation of concrete compressive strength, was carried out on the T-beam and it is observed that the variation of concrete compressive strength has little effect on the deflection. Further conclusions and observations were also drawn.

      • Cosmology from cosmic shear with Dark Energy Survey Science Verification data

        Abbott, T.,Abdalla, F. B.,Allam, S.,Amara, A.,Annis, J.,Armstrong, R.,Bacon, D.,Banerji, M.,Bauer, A. H.,Baxter, E.,Becker, M. R.,Benoit-Lé,vy, A.,Bernstein, R. A.,Bernstein, G. M.,Bertin, E.,Bl American Physical Society 2016 Physical Review D Vol.94 No.2

        <P>We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma(8)(Omega(m)/0.3)(0.5) = 0.81 +/- 0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are similar to 30% larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma(8)(Omega(m)/0.3)(0.5) is present regardless of the value of w.</P>

      • SCIESCOPUS

        Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties

        Gadalla, M.A.,Abdalla, J.A. Techno-Press 2006 Structural Engineering and Mechanics, An Int'l Jou Vol.22 No.5

        Buckling capacity of compression members may change due to inadvertent changes in the member section dimensions or material properties. This may be the result of repair, modification of section properties or degradation of the material properties. In some occasions, enhancement of buckling capacity of compression members may be achieved through splicing of plates or utilization of composite materials. It is very important for a designer to predict the buckling resistance of the compression member and the important parameters that affect its buckling strength once changes in section and/or material properties took place. This paper presents an analytical approach for determining the buckling capacity of a compression member whose geometric and/or material properties has been altered resulting in a multi-step non-uniform section. This analytical solution accommodates the changes and modifications to the material and/or section properties of the compression member due to the factors mentioned. The analytical solution provides adequate information and a methodology that is useful during the design stage as well as the repair stage of compression members. Three case studies are presented to show that the proposed analytical solution is an efficient method for predicting the buckling strength of compression members that their section and/or material properties have been altered due to splicing, coping, notching, ducting and corrosion.

      • SCISCIE
      • SCISCIESCOPUS

        Large-Scale Distribution of Total Mass versus Luminous Matter from Baryon Acoustic Oscillations: First Search in the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 10

        Soumagnac, M. T.,Barkana, R.,Sabiu, C. G.,Loeb, A.,Ross, A. J.,Abdalla, F. B.,Balan, S. T.,Lahav, O. American Physical Society 2016 Physical Review Letters Vol.116 No.20

        <P>Baryon acoustic oscillations in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as nonstandard fluctuations such as compensated isocurvature perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at 3.2 sigma of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter used with more accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.</P>

      • KCI등재

        Multipartite Correlation Degradation in Amplitude-Damping Quantum Channels

        J. Batle,A. Farouk,M. Alkhambashi,S. Abdalla 한국물리학회 2017 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.70 No.7

        Multipartite correlations, such as entanglement and non-locality, are considered when particles pass through a generalized amplitude-damping channel. Results for pure and mixed states for two qubits suggest that initial mixed states can still be considered provided that their degree of mixture is low enough. Also, the ensuing small values for non-locality suggest that instances involving more than three parties cannot easily be considered for practical purposes.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼