RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        CO2-responsive Pickering emulsion stablized by modified silica nanoparticles: A dissipative particle dynamics simulation study

        Yan Wang,Hongbing Wang,Chunling Li,Shuangqing Sun,Songqing Hu 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.97 No.-

        Dissipative particle dynamics (DPD) simulations were applied to investigate the effect of SiO2nanoparticles (SNPs) modified with different tertiary amine chain length and concentration on O/Wemulsion properties, the influence mechanism was also revealed from the molecular level. On this basis,the influence of the modified SNPs volume fraction in the emulsion system was studied. The resultsshowed that with the increase number of tertiary amine chain alkyl carbon, the stability of the originalemulsion system wasfirst enhanced and then weakened while the responsiveness of the protonatedemulsion system wasfirst weakened and then slightly enhanced, the number of tertiary amine chainsmodified on SNPs has the same influence rule on emulsion performance, which was determined by thehydrophobicity of modified SNPs. In addition, with the increase of the modified SNPs volume fraction inthe emulsion system, the stability of the emulsion is gradually enhanced. However, when the volumefraction of SiO2 exceeds 3%, the amplitude of stability enhancement decreases. The increase in theinteraction energy between oil droplets in the equilibrium process is caused by emulsion fusion, which inturn is affected by SNPs. The repulsive force between oil and water is greater than that between two oildrops, which is the reason for the oil drop fusion. The presence of SNPs can reduce the repulsive forcebetween oil and water to different degrees, thus slowing down the fusion of emulsion.

      • KCI등재

        Catalytic graphene-mediated oxygen blocking and depletion for enhancing dual passive/active anticorrosion of epoxy coatings

        Yan Tong,Cheng Meng,Liu Junhao,Sun Shuangqing,Hu Songqing 한국탄소학회 2022 Carbon Letters Vol.32 No.7

        Doping graphene to epoxy resins can improve the protective ability of the coating, but the lack of active anticorrosion function greatly limits its application in the field of anticorrosion. Herein, N/S-rich few-layer-graphene (N/S-FLG) was prepared and adopted to endow epoxy coating with dual passive/active corrosion protection. The obtained amphiphilic N/S-FLG is highly dispersed in the epoxy coating, giving rise to the enhanced hosting effect for graphene defects, avoiding the interface corrosion and blocking the penetration of corrosive species. Furthermore, the doping of N and S endows graphene sheets favourable catalytic ability for corrosive oxygen, actively eliminating its contribution to metal corrosion. Under this dual effect, the passive and active anticorrosion properties of epoxy coating are simultaneously enhanced. The coating with 1 wt% N/S-FLG reduces the corrosion rate of metal to 6.5 × 10–5 mm/a, exhibiting almost no corrosion. The proposed concept of introducing nanocatalytic N/S-FLG is facile and eco-friendly, and will undoubtedly promote the practical application of anticorrosion coatings.

      • KCI등재

        Tunable stability of oil-containing foam systems with different concentrations of SDS and hydrophobic silica nanoparticles

        Shuangqing Sun,Yan Wang,Congtai Yuan,Hongbing Wang,Wendong Wang,Jianhui Luo,Chunling Li,Songqing Hu 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.82 No.-

        Experiment and molecular dynamics simulation were carried out to study the tunable stability of oilcontainingSDS-stabilized Nitrogen-in-water foam. The experimental results show that the foam stabilitycould be tuned by the concentrations of SDS and modified SiO2 nanoparticles. In the foam systems with alow SDS concentration (0.2 wt.%), the foams show poor stability and the foam stability was almost notaffected by the addition of modified SiO2 nanoparticles. The foam stability was greatly improved atmoderate SDS concentration (0.5 wt.%), it enhancedfirst and then weakened with the increase ofmodified SiO2 concentration, and the half-life time achieved a maximum value of 1292 s at 0.05 wt.%modified SiO2. However, at high SDS concentration (0.8 wt.%), the foam stability was pretty good exceptfor when the modified SiO2 concentration is too high (>0.2 wt.%). The microscopic mechanism wasobtained by investigating the structural and dynamic properties of the foamfilm. The simulation workshowed consistent results of foam stability with the experimental results. Moreover, it also revealed thatthe concentration and configuration of SDS will affect its interaction with SiO2 and oil molecule, which iscritical to foam stability.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼