RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Fiber Spool’s Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

        Jing Gao,Linbo Zhang,Dongdong Jiao,Guanjun Xu,Xue Deng,Qi Zang,Honglei Yang,Ruifang Dong,Tao Liu,Shougang Zhang 한국광학회 2024 Current Optics and Photonics Vol.8 No.1

        A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrowlinewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L 16 (4 4 ) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10 −12 /g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

      • KCI등재

        Exchange of the VP5 of Infectious Bursal Disease Virus in a Serotype I Strain with that of a Serotype II Strain Reduced the Viral Replication and Cytotoxicity

        Liting Qin,Xiaole Qi,Honglei Gao,Yulong Gao,Zhigao Bu,Xiaomei Wang 한국미생물학회 2009 The journal of microbiology Vol.47 No.3

        Infectious bursal disease virus (IBDV), belonging to Avibirnavirus genus in the Birnaviridae family, consists of two segments of double-strand RNA. There are two distinct serotypes of IBDV, the pathogenic serotype I and the non-pathogenic serotype II. Comparison of the deduced amino acid sequences of a panel of VP5 genes retrieved from GenBank revealed a high identity among strains within the serotype I or serotype II group but a low identity between strains across two serotypes. In this study, we rescued two mosaic viruses, rGtGxVP5 and rGt2382VP5 by exchanging the VP5 gene of a cell culture-adapted serotype I Gt strain with its counterpart of the very virulent IBDV Gx strain, or a non-pathogenic 23/82 strain of the serotype II. In comparison to the parental strain rGt virus, the rGtGxVP5 showed the similar viral replication, cytotoxicity and the ability of inducing apoptosis; however, the other mosaic virus rGt2382VP5 had a lower titer and a reduced cytotoxicity. Although exchange of VP5 within serotype I group did not alter the viral replication and cytotoxicity of Gt strain, exchange of VP5 in the serotype I with that of a serotype II reduced the viral replication and cytotoxicity on chicken embryo fibroblast (CEF) cells. Therefore, the VP5 of serotype II may be one of the factors responsible for the distinct pathogenic features of two serotypes.

      • KCI등재

        Predictions of Bending Modal Properties of the 3D Braided Composites with the Homogeneous Theoretical Model

        Tao Liu,Jingjing Dong,Chaonan Ye,Xianyan Wu,Wei Fan,Linlin Lu,Jingyu Kang,Xingzhong Gao,Baozhong Sun,Honglei Yi 한국섬유공학회 2022 Fibers and polymers Vol.23 No.12

        In this work, the bending modal properties of three-dimensional (3D) braided composites were investigated withthe experimental and numerical methods. Three braided angles were selected to study the braided angle effect on the modalbehavior of 3D braided composites. According to the experimental parameters, a homogeneous model containing the interior,surface and corner representative unit cells of the braided composites were proposed to compute the elastic constants of eachcomposite. Besides, the fiber breakage defects were introduced to the homogeneous model to improve the accuracy ofpredicting the modal behavior of the braided composite. The results indicate that the increase of the braided angle and thefiber breakage defects could apparently reduce the natural frequency of the braided composite. The modal propertiessimulated by the homogeneous models containing some fiber breakage defects could fit well with the correspondingexperimental results. The proposed method to create the homogenous model can be used to predict the modal behavior of the3D braided composites.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼