RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Maximization of ICRF power by SOL density tailoring with local gas injection

        Jacquet, P.,Goniche, M.,Bobkov, V.,Lerche, E.,Pinsker, R.I.,Pitts, R.A.,Zhang, W.,Colas, L.,Hosea, J.,Moriyama, S.,Wang, S.-J.,Wukitch, S.,Zhang, X.,Bilato, R.,Bufferand, H.,Guimarais, L.,Faugel, H.,H IOP 2016 Nuclear fusion Vol.56 No.4

        <P>Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (~0.7  ×  10<SUP>22</SUP> el s<SUP>−1</SUP> in AUG, ~1.0  ×  10<SUP>22</SUP> el s<SUP>−1</SUP> in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements for EMC3-EIRENE. Field line tracing for ITER in the 15 MA <I>Q</I> <SUB>DT</SUB>  =  10 reference scenario indicates that the planned gas injection system could be used to tailor the density in front the antennas. Benchmarking of EMC3-EIRENE against AUG and JET data is planned as a first step towards the ITER SOL modelling required to quantify the effect of gas injection on the SOL density in front of the antennas.</P>

      • SCISCIESCOPUS

        Design and tests of 500kW RF windows for the ITER LHCD system

        Hillairet, J.,Kim, J.,Faure, N.,Achard, J.,Bae, Y.S.,Bernard, J.M.,Delpech, L.,Goniche, M.,Larroque, S.,Magne, R.,Marfisi, L.,Park, S.,Poli, S.,Dechambre, N.,Vulliez, K. Elsevier 2015 Fusion engineering and design Vol.94 No.-

        <P><B>Abstract</B></P> <P>In the frame of a R&D effort conducted by CEA towards the design and the qualification of a 5GHz LHCD system for the ITER tokamak, two 5GHz 500kW/5s windows have been designed, manufactured and tested at high power in collaboration with the National Fusion Research Institute (NFRI). The window design rely on a symmetrical pill-box concept with a cylindrical beryllium oxide ceramic brazed on an actively water cooled copper skirt. The ceramic RF properties have been measured on a test sample to get realistic values for guiding the design. Low power measurements of the manufactured windows show return losses below −32dB and insertion losses between −0.01dB and −0.05dB, with an optimum frequency shifted toward lower frequencies. High power tests conducted at NFRI show unexpected total power loss for both windows. The ceramic temperature during RF pulses has been found to reach unexpected high temperature, preventing these windows to be used under CW conditions. A post-mortem RF analysis of samples taken from one window shows that the dielectric properties of the ceramic were not the ones measured on the manufacturer sample, which partly explain the differences with the reference modelling.</P>

      • KCI등재

        Improvement of lower hybrid current drive systems for high-power and long-pulse operation on EAST

        Wang M.,Liu L.,Zhao L.M.,Li M.H.,Ma W.D.,Hu H.C.,Wu Z.G.,Feng J.Q.,Yang Y.,Zhu L.,Chen M.,Zhou T.A.,Jia H.,Zhang J.,Cao L.,Zhang L.,Liang R.R.,Ding B.J.,Zhang X.J.,Shan J.F.,Liu F.K.,Ekedahl A.,Gonich 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.11

        Aiming at high-power and long-pulse operation up to 1000 s, some improvements have been made for both 2.45 GHz and 4.6 GHz lower hybrid (LH) systems during the recent 5 years. At first, the guard limiters of the LH antennas with graphite tiles were upgraded to tungsten, the most promising material for plasma facing components in nuclear fusion devices. These new guard limiters can operate at a peak power density of 12.9 MW/m2 . Strong hot spots were usually observed on the old graphite limiters when 4.6 GHz system operated with power >2.0 MW [B. N. Wan et al., Nucl. Fusion 57 (2017) 102019], leading to a reduction of the maximum power capability. With the new limiters, 4.6 GHz LH system, the main current drive (CD) and electron heating tool for EAST, can be operated with power >2.5 MW routinely. Long-pulse operation up to 100 s with 4.6 GHz LH power of 2.4 MW was achieved in 2021 and the maximal temperature on the guard limiters measured by an infrared (IR) camera was about 540 C, much below the permissible value of tungsten material (~1200 C). A discharge with a duration of 1056 s was achieved and the 4.6 GHz LH energy injected into the plasma was up to 1.05 GJ. Secondly, the fully-activemultijunction (FAM) launcher of 2.45 GHz system was upgraded to a passive-active-multijunction (PAM), for which the density of optimum coupling was relatively low (below the cut-off value). Good coupling with reflection coefficient ~3% has been achieved with plasma-antenna distance up to 11 cm for the new PAM. Finally, in order to eliminate the effect of ion cyclotron range of frequencies (ICRF) wave on 4.6 GHz LH wave coupling, the location of the ICRF launcher was changed to a port that is located 157.5 toroidally from the 4.6 GHz LH system and is not magnetically connected

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼