RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Behavior of steel storage pallet racking connection - A review

        Chulin Chen,Lei Shi,Mahdi Shariati,Ali Toghroli,Edy Tonnizam Mohamad,Dieu Tien Bui,Majid Khorami 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.30 No.5

        Steel pallet racking industry has globally used from the industrial revolution and has deeply evolved from hot-rolled profile into cold-formed profile to raise the optimization in engineering field. Nowadays, some studies regarding cold-formed steel profile have been performed, but fewer studies in terms of cold-formed pallet racking specifically in connection due to the semi-rigid behavior by lug-hooked into the upright have been conducted. The objective of this study is to review the related literature on steel storage racking connection behavior.

      • KCI등재

        Using genetic algorithms method for the paramount design of reinforced concrete structures

        Chuanhua Xu,Xiliang Zhang,James H. Haido,Peyman Mehrabi,Ali Shariati,Edy Tonnizam Mohamad,Nguyen Hoang,Karzan Wakil 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.71 No.5

        Genetic Algorithms (GAs) have found the best design for reinforced concrete frames. The design of the optimum beam sections by GAs has been unified. The process of the optimum-design sections has satisfied axial, flexural, shear and torsion necessities based on the designing code. The frames’ function has contained the function of both concrete and reinforced steel besides the function of the frames’ formwork. The results have revealed that limiting the dimension of frame-beam with the dimension of frame-column have increased the optimum function of the structure, thereby reducing the reanalysis requirement for checking the optimum-designed structures through GAs.

      • SCIESCOPUS

        Practical use of computational building information modeling in repairing and maintenance of hospital building- case study

        Akhoundan, Majid Reza,Khademi, Kia,Bahmanoo, Sam,Wakil, Karzan,Mohamad, Edy Tonnizam,Khorami, Majid Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        Computational Building Information Modeling (BIM) is an intelligent 3D model-based process that provides architecture, engineering, and construction professionals the insight to plan, design, construct, and manage buildings and infrastructure more efficiently. This paper aims at using BIM in Hospitals configurations protection. Infrastructure projects are classified as huge structural projects taking advantage of many resources such as finance, materials, human labor, facilities and time. Immense expenses in infrastructure programs should be allocated to estimating the expected results of these arrangements in domestic economy. Hence, the significance of feasibility studies is inevitable in project construction, in this way the necessity in promoting the strategies and using global contemporary technologies in the process of construction maintenance cannot be neglected. This paper aims at using the building information modeling in covering Imam Khomeini Hospital's equipment. First, the relationship between hospital constructions maintenance and repairing, using the building information modeling, is demonstrated. Then, using library studies, the effective factors of constructions' repairing and maintenance were collected. Finally, the possibilities of adding these factors in Revit software, as one of the most applicable software within BIM is investigated and have been identified in some items, where either this software can enter or the software for supporting the repairing and maintenance phase lacks them. The results clearly indicated that the required graphical factors in construction information modeling can be identified and applied successfully.

      • KCI등재

        Practical use of computational building information modeling in repairing and maintenance of hospital building- case study

        Majid Reza Akhoundan,Kia Khademi,Sam Bahmanoo,Karzan Wakil,Edy Tonnizam Mohamad,Majid Khorami 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        Computational Building Information Modeling (BIM) is an intelligent 3D model-based process that provides architecture, engineering, and construction professionals the insight to plan, design, construct, and manage buildings and infrastructure more efficiently. This paper aims at using BIM in Hospitals configurations protection. Infrastructure projects are classified as huge structural projects taking advantage of many resources such as finance, materials, human labor, facilities and time. Immense expenses in infrastructure programs should be allocated to estimating the expected results of these arrangements in domestic economy. Hence, the significance of feasibility studies is inevitable in project construction, in this way the necessity in promoting the strategies and using global contemporary technologies in the process of construction maintenance cannot be neglected. This paper aims at using the building information modeling in covering Imam Khomeini Hospital’s equipment. First, the relationship between hospital constructions maintenance and repairing, using the building information modeling, is demonstrated. Then, using library studies, the effective factors of constructions’ repairing and maintenance were collected. Finally, the possibilities of adding these factors in Revit software, as one of the most applicable software within BIM is investigated and have been identified in some items, where either this software can enter or the software for supporting the repairing and maintenance phase lacks them. The results clearly indicated that the required graphical factors in construction information modeling can be identified and applied successfully.

      • KCI등재

        An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections

        Qiang Xie,Hamid Sinaei,Mahdi Shariati,Majid Khorami,Edy Tonnizam Mohamad,Dieu Tien Bui 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.30 No.5

        The aim of this research is reinforcing of concrete with variety of fiber reinforced polymer (FRP) configurations and investigates the load capacity and ductility of these connections using an experimental investigation. Six scaled-down RC exterior joints were tested under moderately monotonic loads. The results show that, the shape of the FRP had a different effect on the joint capacity and the connection ductility coefficient. The greatest effect on increasing the ductility factor was seen in the sample where two reinforcement plates were used on both sides of the beam web (RCS5 sample). For the sample with the presence of FRP plates at the top and bottom of the beam (RCS3 sample), the ductility factor was reduced even the load capacity of this sample increased. Except for the RCS3 sample, the rest of the samples exhibited an increase in the ductility factor due to the FRP reinforcement.

      • KCI등재

        A review on pavement porous concrete using recycled waste materials

        Ali Toghroli,Mahdi Shariati,Fathollah Sajedi,Zainah Ibrahim,Suhana Koting,Edy Tonnizam Mohamad,Majid Khorami 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.4

        Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes’ mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials’ type applied in PC production.

      • SCIESCOPUS

        A review on pavement porous concrete using recycled waste materials

        Toghroli, Ali,Shariati, Mahdi,Sajedi, Fathollah,Ibrahim, Zainah,Koting, Suhana,Mohamad, Edy Tonnizam,Khorami, Majid 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.4

        Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

      • KCI등재

        Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete

        Diyuan Li,Ali Toghroli,Mahdi Shariati,Fathollah Sajedi,Dieu Tien Bui,Peiman Kianmehr,Edy Tonnizam Mohamad,Majid Khorami 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.23 No.2

        chieving a pervious concrete (PC) with appropriate physical and mechanical properties used in pavement have been strongly investigated through the use of different materials specifically from the global waste materials of the populated areas. Discarded tires and the rubber tire particles have been currently manufactured as the recycled waste materials. In the current study, the combination of polymer, silica fume and rubber aggregates from rubber tire particles have been used to obtain an optimized PC resulting that the PC with silica fume, polymer and rubber aggregate replacement to mineral aggregate has greater compressive and flexural strength. The related flexural and compressive strength of the produced PC has been increased 31% and 18% compared to the mineral PC concrete, also, the impact resistance has been progressed 8% compared to the mineral aggregate PC and the permeability with Open Graded Fraction Course standard (OGFC). While the manufactured PC has significantly reduced the elasticity modulus of usual pervious concrete, the impact resistance has been remarkably improved.

      • KCI등재

        Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

        Khosro Shahpoori Arani,Yousef Zandi,Binh Thai Pham,M.A. Mu’azu,Javad Katebi,Mohammad Mohammadhassani,Seyedamirhesam Khalafi,Edy Tonnizam Mohamad,Karzan Wakil,Majid Khorami 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.23 No.1

        This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/ rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

      • KCI등재

        Application of ANFIS technique on performance of C and L shaped angle shear connectors

        Yadollah Sedghi,Yousef Zandi,Mahdi Shariati,Ebrahim Ahmadi,Vahid Moghimi Azar,Ali Toghroli,Maryam Safa,Edy Tonnizam Mohamad,Majid Khorami,Karzan Wakil 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.3

        The behavior of concrete slabs in composite beam with C and L shaped angle shear connectors has been studied in this paper. These two types of angle shear connectors' instalment have been commonly utilized. In this study, the finite element (FE) analysis and soft computing method have been used both to present the shear connectors' push out tests and providing data results used later in soft computing method. The current study has been performed to present the aforementioned shear connectors' behavior based on the variable factors aiming the study of diverse factors' effects on C and L shaped angle in shear connectors. ANFIS (Adaptive Neuro Fuzzy Inference System), has been manipulated in providing the effective parameters in shear strength forecasting by providing input-data comprising: height, length, thickness of shear connectors together with concrete strength and the respective slip of shear connectors. ANFIS has been also used to identify the predominant parameters influencing the shear strength forecast in C and L formed angle shear connectors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼