RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification and differential expression of two isogenes encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase in Glycine max

        Man Zhang,Deyue Yu,Kai Li,Jianyu Liu 한국식물생명공학회 2012 Plant biotechnology reports Vol.6 No.4

        Plant 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) were considered to be encoded by single copy. In this study, we successfully isolated two DXR isogenes, designated GmDXR1 and GmDXR2, from soybean. The multicopy nature of DXRs in soybean was supported by Southern blot. Alignment of the two GmDXRs showed the presence of the N-terminal transit peptide for plastids, the conserved cleavage site, prolinerich region, and the NADPH-binding motif. Phylogenetic analysis revealed GmDXR1 and GmDXR2 belonged to different branches of angiosperm DXRs clusters. Expression pattern analysis indicated that GmDXR1 was expressed in all analyzed organs except the pod walls, with the highest level in seeds, whereas no message was detected for GmDXR2. In response to heat stress, GmDXR1 showed declined transcript levels in the experiments; in contrast,GmDXR2 was highly responsive, with mRNA accumulation peaking at 6 h after treatment. We also demonstrated that both GmDXRs were localized in chloroplasts. Overexpression of GmDXRs induced increased contents of various isoprenoids (chlorophyll, carotenoids, and gibberellins),but with reduced level of ABA, indicating that GmDXRs participate in the control of differential isoprenoid biosynthesis of the MEP pathway. This work provides a new insight into the wide presence of multicopies of DXR enzyme in plants.

      • KCI등재

        Cloning and functional analysis of two GmDeg genes in soybean [Glycine max (L.) Merr.]

        Xing Kong,Jingyao Zhang,Deyue Yu,Jun-Yi Gai,Shouping Yang 한국식물학회 2017 Journal of Plant Biology Vol.60 No.1

        Although light is the ultimate substrate in photosynthesis, strong light can also be harmful and lead to photoinhibition. The DEG proteases play important roles in the degradation of misfolded and damaged proteins. In this study, two photoinhibition-related genes from soybean [Glycine max (L.) Merr.], GmDeg1 and GmDeg2, were cloned. Bioinformatics analysis indicated that these two proteases both contain a PDZ domain and are serine proteases. The expression levels of GmDeg1 and GmDeg2 increased significantly after 12 h of photooxidation treatment, indicating that GmDeg1 and GmDeg2 might play protective roles under strong light conditions. In in vitro proteolytic degradation assays, recombinant GmDeg1 and GmDeg2 demonstrated biological activities at temperatures ranging from 20°C to 60°C and at pH 5.0 to 8.0. By contrast, the proteases showed no proteolytic effect in the presence of a serine protease inhibitor. Taken together, these results provided strong evidence that GmDeg1 and GmDeg2 are serine proteases that could degrade the model substrate in vitro, indicating that they might degrade damaged D1 protein and other mis-folded proteins in vivo. Furthermore, GmDeg1 and GmDeg2 were transformed into Arabidopsis thaliana to obtain transgenic plants. Leaves from the transgenic and wild-type plants were subjected to strong light conditions in vitro, and the PSII photochemical efficiency (Fv/Fm) was measured. The Fv/Fm of the transgenic plants was significantly higher than that of the wild-type plants at most time points. These results imply that GmDeg1 and GmDeg2 would have similar functions to Arabidopsis AtDeg1, thus accelerating the recovery of PSII photochemical efficiency.

      • KCI등재

        Mapping QTLs for Tissue Culture Response in Soybean (Glycine max (L.) Merr.)

        Chao Yang,Tuanjie Zhao,Deyue Yu,Junyi Gai 한국분자세포생물학회 2011 Molecules and cells Vol.32 No.4

        Quantitative trait loci (QTLs) that control the tissue cul-ture response in soybean were detected by using 184 recombinant inbred lines (RILs) derived from two varieties: Kefeng No.1 and Nannong 1138-2. The molecular map consisting of 834 molecular markers using this population covered space 2307.83 cM of the genome throughout 24 linkage groups. The performance of tissue culture in soybean was evaluated by two indices: callus induction frequency (CIF) and somatic embryos initiation frequency (SEIF). They were expressed as the number of explants producing callus/ the number of total explants and the number of explants producing somatic embryos/ the number of total explants, respectively. The RIL lines showed continuous segregation for both indices. With the composite interval mapping (CIM) described in Windows QTL Cartographer Version 2.5, three quantitative trait loci (QTLs) were identified for the frequency of callus induction, on chromosomes B2 and D2, accounting for phenotypic variation from 5.84% to 16.60%; four QTLs on chromo-some G were detected for the frequency of somatic em-bryos initiation and explained the phenotypic variation from 7.79% to 14.16%. The information of new QTLs identified in the present study will contribute to genetic improvement of regeneration traits with marker-assisted selection (MAS) in soybean.

      • KCI등재

        Soybean GmAOC3 promotes plant resistance to the common cutworm by increasing the expression of genes involved in resistance and volatile substance emission in transgenic tobaccos

        Qian Wu,Hui Wang,Juanjuan Wu,Dagang Wang,Yongli Wang,Lei Zhang,Zhiping Huang,Deyue Yu 한국식물학회 2015 Journal of Plant Biology Vol.58 No.4

        The evaluation and use of endogenous soybean genes is an effective strategy to minimize the yield losses caused by insects. Allene oxide cyclase (AOC) catalyzes the most important step in the biosynthesis of jasmonate (JA), which plays a crucial role in plant defense against insects. In this study, the role of GmAOC3 in plant insect resistance was evaluated. Real-time PCR results indicate that GmAOC3 was uniquely and rapidly activated and attained peak expression in leaves after attack by the common cutworm (CCW). In insect bioassays, transgenic lines overexpressing GmAOC3 were significantly less damaged than wild-type plants, and the relative growth rate of CCW fed with leaves from transgenic lines was significantly lower than that of CCW fed with leaves from wild-type plants. Electron microscopy revealed that the density of leaf trichomes in transgenic lines overexpressing GmAOC3 was greater than that in wild-type tobacco. Several physiological and morphological indicators, including JA, phenolic content and the relative expression levels of the putrescine N-methyltransferase (PMT) and proteinase inhibitor (PI) genes, phenylalanine ammonia lyase (PAL) activity and volatile substances, increased in the transgenic plants overexpressing GmAOC3. Our findings indicate that GmAOC3 plays an important role in soybean resistance to CCW and can be used as a resource for plant breeding.

      • KCI등재

        Genomic, evolutionary and expression profile analysis of Hsp70 superfamily in A and D genome of cotton (Gossypium spp.) under the challenge of Verticillium dahliae

        Songhua Xiao,Jianwen Xu;Jun Zhao;Jianguang Liu,Jianwen Xu;Jun Zhao;Jianguang Liu,Qiaojuan Wu,Jingzhong Yu,Deyue Yu 한국식물학회 2017 Journal of Plant Biology Vol.60 No.1

        In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼