RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

        Tamaryska SETYAYUNITA,Ragil Widyorini,Sri Nugroho Marsoem,Denny Irawati 한국목재공학회 2022 목재공학 Vol.50 No.2

        Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

      • KCI등재

        Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber Bundles

        Tamaryska SETYAYUNITA,Ragil Widyorini,Sri Nugroho Marsoem,Denny Irawati 한국목재공학회 2022 목재공학 Vol.50 No.6

        Currently, composite board manufacturing using natural fibers has the potential to expand owing to environmental awareness. To produce a composite board, treatment is required to improve the mechanical and physical properties of the natural fibers. In this study, sodium chloride (NaCl) was used for the chemical treatment. However, studies on chemical treatments using NaCl are limited. This study aimed to investigate the characteristics of kenaf fibers after NaCl treatment. The NaCl treatment concentrations were 1, 3, and 14 5 wt.% at room temperature, with soaking durations of 1, 2, and 3 h. The tensile strength, strain, and Young’s modulus were measured to evaluate the mechanical properties of the fibers. The fiber bundle diameter, weight change owing to treatment, and contact angle were determined to analyze the effect of NaCl treatment. The kenaf fiber bundle treated with 5 wt.% NaCl for 3 h exhibited the highest tensile strength, Young’s modulus, reduction in fiber bundle diameter, weight change, and decrease in contact angle compared to those of untreated fiber bundles. The tensile properties of the fiber bundle exhibited a tendency to decrease with increasing fiber bundle diameter. Increasing the soaking duration from 1 to 2 h did not result in a significant decrease in the fiber bundle diameter or an increase in tensile strength. However, a further increase in the soaking duration from 2 to 3 h resulted in a considerable decrease in the fiber bundle diameter and an increase in the tensile strength.

      • KCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        Johanes Pramana Gentur SUTAPA,Ganis Lukmandaru,Sigit SUNARTA,Rini PUJIARTI,Denny Irawati,Rizki ARISANDI,Riska DWIYANNA,Robertus Danu PRIYAMBODO 한국목재공학회 2024 목재공학 Vol.52 No.3

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      • SCOPUSKCI등재

        Fiber Morphology and Physical Characteristics of Gigantochloa atter at Three Different Ages and Heights of Culms for Better Utilization1

        Sri Nugroho Marsoem,Fajar Setiaji,Nam Hum Kim,Joko Sulistyo,Denny Irawati,Widyanto Dwi Nugroho,Yus Andini Bekti Pertiwi 한국목재공학회 2015 목재공학 Vol.43 No.2

        Fiber morphology and basic characteristics of Legi bamboos (Gigantochloa atter) growing on Yogyakarta were studied considering their age and height positions in the culms. Culms of 4, 16, and 40 months were harvested, and their total lengths were measured. The length, diameter, and wall thickness of each internode were measured. All the sample culms were divided into three different parts along the height, and their fiber dimension and physical properties were observed. The data obtained were analyzed by analysis of variance. The results showed that the culms had a diameter of 5.8 to 10.8 cm. The lowest internodes always showed the shortest length and the thickest wall. The culms had an average fiber length of 2.41 mm and Runkel ratio of 0.61. Fiber length was affected by the height, while fiber diameter, lumen diameter, and fiber wall thickness were affected significantly by the age of the culms. The culms had high green moisture content (GMC) of 157.89%, and basic density (BD) of 456.67 kg.m -3 , a total longitudinal shrinkage of 0.35%, and relatively low R/T shrinkage ratio. The interactions between age and height were affected GMC and BD.

      • SCOPUSKCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        ( Johanes Pramana Gentur Sutapa ),( Ganis Lukmandaru ),( Sigit Sunarta ),( Rini Pujiarti ),( Denny Irawati ),( Rizki Arisandi ),( Riska Dwiyanna ),( Robertus Danu Priyambodo ) 한국목재공학회 2024 목재공학 Vol.52 No.2

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼