RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Chemical Compositions and Insecticidal Activity of Eucalyptus urophylla Essential oil Against Culex quinquefasciatus Mosquito

        Rini Pujiarti,Kasmudjo 한국목재공학회 2016 목재공학 Vol.44 No.4

        Eucalyptus oils are widely used as spices, perfume industrial materials, food flavorings, and medicines. Several types of Eucalyptus oils also have insecticidal activity and as carminative. This study investigated the chemical composition, insecticidal (larvicidal and repellent) activity of E. urophylla oil against filarial mosquito Culex quinquefasciatus. E. urophylla oil was obtained from fresh leaves by water-steam distillation with oil yield 1.08%. E. urophylla oil in this study had no color (clear), has odor (typical eucalyptus), with specific gravity 0.941; refractive index 1.465; miscibility in 70% ethanol 1 : 3; and optical rotation (-) 5.83°. The major compounds of the oil were α-pinene (11.73%), 1,8-cineole (49.86%), β-ocimene (6.25%), γ-terpinene (9.11%), and α-terpinyl acetate (7.63%). The result showed the excellent insecticide activity against C. quinquefasciatus. The oil provided larvicidal activity with LC50: 80.21 ppm and LC90: 210.18 ppm, and repellent activity with IC50: 0.82% and IC90: 4.88%. The present study showed the effectiveness of E. urophylla as natural insecticide against C. quinquefasciatus, the mosquito vector of filariasis.

      • KCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        Johanes Pramana Gentur SUTAPA,Ganis Lukmandaru,Sigit SUNARTA,Rini PUJIARTI,Denny Irawati,Rizki ARISANDI,Riska DWIYANNA,Robertus Danu PRIYAMBODO 한국목재공학회 2024 목재공학 Vol.52 No.3

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      • SCOPUSKCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        ( Johanes Pramana Gentur Sutapa ),( Ganis Lukmandaru ),( Sigit Sunarta ),( Rini Pujiarti ),( Denny Irawati ),( Rizki Arisandi ),( Riska Dwiyanna ),( Robertus Danu Priyambodo ) 한국목재공학회 2024 목재공학 Vol.52 No.2

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼