RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Fluoride Debate: The Pros and Cons of Fluoridation

        Antoine Aoun,Farah Darwiche,Sibelle Al Hayek,Jacqueline Doumit 한국식품영양과학회 2018 Preventive Nutrition and Food Science Vol.23 No.3

        Fluoride is one of the most abundant elements found in nature. Water is the major dietary source of fluoride. The only known association with low fluoride intake is the risk of dental caries. Initially, fluoride was considered beneficial when given systemically during tooth development, but later research has shown the importance and the advantages of its topical effects in the prevention or treatment of dental caries and tooth decay. Water fluoridation was once heralded as one of the best public health achievements in the twentieth century. Since this practice is not feasible or cost effective in many regions, especially rural areas, researchers and policy makers have explored other methods of introducing fluoride to the general population such as adding fluoride to milk and table salt. Lately, major concerns about excessive fluoride intake and related toxicity were raised worldwide, leading several countries to ban fluoridation. Health-care professionals and the public need guidance regarding the debate around fluoridation. This paper reviews the different aspects of fluoridation, their effectiveness in dental caries prevention and their risks. It was performed in the PubMed and the Google Scholar databases in January 2018 without limitation as to the publication period.

      • KCI등재

        Mechanisms of Preconditioning Exercise-Induced Neurovascular Protection in Stroke

        Sherif Hafez,Zeina Eid,Sara Alabasi,Yasenya Darwiche,Sara Channaoui,David C. Hess 대한뇌졸중학회 2021 Journal of stroke Vol.23 No.3

        Ischemic stroke is a leading cause of death and disability. Tissue plasminogen activator is the only U.S. Food and Drug Administration approved thrombolytic therapy for ischemic stroke patients till date. However, its use is limited due to increased risk of bleeding and narrow therapeutic window. Most of the preclinically tested pharmacological agents failed to be translated to the clinic. This drives the need for alternative therapeutic approaches that not only provide enhanced neuroprotection, but also reduce the risk of stroke. Physical exercise is a sort of preconditioning that provides the body with brief ischemic episodes that can protect the body from subsequent severe ischemic attacks like stroke. Physical exercise is known to improve cardiovascular health. However, its role in providing neuroprotection in stroke is not clear. Clinical observational studies showed a correlation between regular physical exercise and reduced risk and severity of ischemic stroke and better outcomes after stroke. However, the underlying mechanisms through which prestroke exercise can reduce the stroke injury and improve the outcomes are not completely understood. The purpose of this review is to: demonstrate the impact of exercise on stroke outcomes and show the potential role of exercise in stroke prevention and recovery; uncover the underlying mechanisms through which exercise reduces the neurovascular injury and improves stroke outcomes aiming to develop novel therapeutic approaches.

      • SCIESCOPUS

        Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process

        Laziz, Noureddine Ait,Abou-Rjeily, John,Darwiche, Ali,Toufaily, Joumana,Outzourhit, Abdelkader,Ghamouss, Fouad,Sougrati, Moulay Tahar The Korean Electrochemical Society 2018 Journal of electrochemical science and technology Vol.9 No.4

        Natural graphite is obtained from an abandoned open-cast mine and purified by a simple, eco-friendly and affordable beneficiation process including ball milling and flotation process. Both raw graphite (55 wt %) and its concentrate (85 wt %) were electrochemically tested in order to evaluate these materials as anode materials for Li-ion and Na-ion batteries. It was found that both raw and purified graphites exhibit good electrochemical activities with respect to lithium and sodium ions through completely different reaction mechanisms. The encouraging results demonstrated in this work suggest that both raw and graphite concentrates after flotation could be used respectively for stationary and embedded applications. This strategy would help in developing local electrical storage systems with a significantly low environmental footprint.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼