RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Treatment of wastewater containing linear alkylbenzene sulfonate by bacterial-microalgal biological turntable

        Renjie Tu,Wenbiao Jin,Song-fang Han,Binbin Ding,Shu-hong Gao,Xu Zhou,Shao-feng Li,Xiaochi Feng,Qing Wang,Qinhui Yang,Yu Yuwen 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.5

        Linear alkylbenzene sulfonate (LAS), which is widely used as detergent, is a common toxic pollutant in wastewater. Generally, biodegradation process is applied to remove LAS. However, the efficiency of traditional wastewater treatment cannot meet the growing demand. In this study, an improved biological turntable with a symbiotic system of bacteria and microalgae was primarily used to enhance the biodegradation efficiency of LAS from wastewater. The symbiotic system of bacteria and microalgae was mainly composed of Scenedesmus dimorphus and three LAS-degrading bacteria Plesiomonas sp. (L3, L7) and Pseudomonas sp. (H6). The average removal rate of LAS was up to 94.6%. The LAS concentration of the effluent of the system decreased by 81.7% after the bacterial-microalgae inoculation (the inoculation temperature was 25 oC; microalgae were inoculated at a concentration of 10% only at the start of the system; bacteria were continuously inoculated at 1‰ concentration). After bacterial-microalgae inoculation, the average effluent concentration of CODCr in the tertiary reaction tank was 24.3mg/L, the average membrane effluent concentration was 15.8mg/L, and the average removal rate was 90.5%. Compared with the control group without inoculation, the concentration of CODCr in the tertiary reaction tank and membrane effluent decreased by 55.7% and 46.4%. The denaturing gradient electrophoresis (DGGE) pattern analysis of the systemic flora showed that there were two dominant species of high LAS degrading bacteria. They were identified to belong to Plesiomonas sp. and Pseudomonas sp., respectively.

      • KCI등재

        An Investigation of Surface Tracking Characteristics and Factors Influencing Epoxy Resin Pouring Insulation for Dry-type Reactors

        Yongqiang Wang,Han Liu,Wenpeng Li,Renjie Ding 한국고분자학회 2019 Macromolecular Research Vol.27 No.3

        This study aimed to understand the deterioration mechanisms of epoxy resin pouring insulation for outdoor dry-type reactors under the effect of long-term surface tracking discharge. Epoxy resin insulation boards similar to the main insulation composition of the dry-type reactor were poured as the experimental material. A tracking experimental platform of insulation materials was built using an inclined plate method. The tracking discharge characteristics and surface erosion of the insulation materials were measured and analyzed. The characteristics of partial discharge, erosion, hydrophobicity and surface roughness were measured experimentally. Surface morphology, three-dimensional morphology and Fourier infrared images at different stages during erosion of the epoxy resin insulation material were analyzed. The effect of glass fiber content on the tracking resistance to erosion was characterized. The results show that the tracking process of epoxy resin insulation material experienced initiation, stability, development and outbreak periods. The flashover discharge corresponding to the development period was the main reason for the carbonization of the insulating material. During the tracking process, with a change in surface topography and formation of surface products, the surface roughness of the material generally increased along with the surface roughness which rose fastest during the discharge outbreak period. The changes in the surface morphology and three-dimensional morphology of the epoxy resin material constitute the basis for assessing the condition of the insulation surface and development of the erosion. The discharge capacity of epoxy resin generally shows an exponential increase. Adding 20 wt% of glass fibers that are evenly distributed and have reduced exposure can improve the tracking resistance of epoxy resin insulation materials.

      • KCI등재

        Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate

        Xu Zhou,Wenbiao Jin,Lan Wang,Wanqing Ding,Chuan Chen,Xijun Xu,Renjie Tu,Song-fang Han,Xiaochi Feng,Duu-Jong Lee 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.9

        Enhancement of sludge dewaterability is key for sludge management and disposal of wastewater treatment plants (WWTP). In this study, the Fe2+-peroxymonosulfate (PMS) conditioning approach was first used to oxidize the primary sludge from the primary sedimentation tank of a full scale WWTP. The combination of Fe2+ (0.05-0.5 g/g TSS) and PMS (0.05-0.5 g/g TSS) could significantly improve the dewaterability of primary sludge. The optimal addition amount of Fe2+ and PMS was 0.1 g/g TSS and 0.25 g/g TSS, respectively, under which the capillary suction time (CST) and specific resistance to filtration (SRF) of the sludge was reduced by 79% and 95%. The physicochemical properties (particle size, zeta potential, EPS composition) of the primary sludge before and after oxidative conditioning were measured. Results showed that sulfate radicals generated from Fe2+-PMS system effectively reduced organic matter in different EPS fractions, further destroying sludge floc cells. Then the bound water in the sludge flocs was released, thereby improving the sludge dewaterability. The microscopic morphology also indicated that the sludge flocs have a blocky structure with tight texture before conditioning. After conditioning, the sludge flocs become smaller, and many irregular pores are formed on the surface, which facilitates the passage of internal moisture. Economic analysis showed that Fe2++PMS conditioning is more economical than the traditional Fenton method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼