RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Review on 3D Printed Bioimplants

        Chee Meng Benjamin Ho,Sum Huan Ng,윤용진 한국정밀공학회 2015 International Journal of Precision Engineering and Vol. No.

        Additive manufacturing (AM) also known as 3D printing have been making inroads into medical applications such as surgical models and tools, tooling equipment, medical devices. One key area researchers are looking into is bioimplants. With the improvement and development of AM technologies, many different bioimplants can be made using 3D printing. Different biomaterials and various AM technologies can be used to create customized bioimplants to suit the individual needs. With the aid of 3D printing this could lead to new foam and design of bioimplants in the near further. Therefore, the purpose of this review articles is to (1) Describe the various AM technologies and process used to make bioimplants, (2) Different types of bioimplants printed with AM and (3) Discuss some of the challenges and future developments for 3D printed bioimplants.

      • KCI등재

        Printing of Woodpile Scaffold Using Fresnel Lens for Tissue Engineering

        Chee Meng Benjamin Ho,Kan Hu,Abhinay Mishra,Jinhong Noh,Jeonghwan Kim,Suhan Lee,MinSung Yoon,Yong-Jin Yoon 한국정밀공학회 2022 International Journal of Precision Engineering and Vol.9 No.2

        Tissue engineering has played a very significant role in the medical fi eld with an ever-growing demand for various tissue donations. One crucial factor is the fabrication of a desirable artificial three-dimensional (3D) tissue scaffold to act as the extracellular matrix (ECM), meeting the complex requirements for specific cell cultures. Existing scaffold fabrication techniques and systems used in constructing extracellular matrix are two-dimensionally limiting, expensive, and time-consuming. For instance, some simple fabrication methods cannot control fabricated structures with morphologies accurately, while others may introduce harmful organic solvents into scaffolds during the fabrication processes. To achieve an optimal scaffold for tissue engineering, we developed a novel 3D printing system capable of printing tissue scaffold structures with improved efficiency. The uniqueness of our system is the transparent diffractive optical elements (DOEs) of linear binary Fresnel lens fabricated to control the luminous intensity distribution. These DOEs of different patterns are arranged in series on a coverslip with each optical element designed to diff act and focus incident light at a particular plane within the device. Coupled with other optical components of the system, 3D woodpile scaffolds were printed in an effective and efficient onestep light exposure process to photo cross-link the polymer solution upon demand. The combination of photo cross-linking and diffractive optical technique incorporated within our system enables the patterning of polymer solutions within seconds, making large-scale fast production not only feasible, but also making printing of complex features simple. With this system, 3D two-layered woodpile structures were successfully fabricated within 3 seconds. While cell toxicity studies showed that the scaffold can be used for tissue engineering.

      • KCI등재

        Fabrication of Plasmon-Active Polymer-Nanoparticle Composites for Biosensing Applications

        Abhinay Mishra,Abdul Rahim Ferhan,Chee Meng Benjamin Ho,Joohyun Lee,Dong-Hwan Kim,Young Jin Kim,Yong-Jin Yoon 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.3

        Polymer-nanoparticle composites find relevance in various fields ranging from optoelectronics to the biomedical sciences. Various efforts have been made to devise fabrication strategies that are simple, robust,and reproducible. Herein, we demonstrate a universal strategy to fabricate plasmon-active polymer-nanoparticle composites, exemplified by the incorporation of gold nanoparticles (AuNPs) into a triethylene glycol dimethacrylate (TEGDMA) polymer scaffold. The TEGDMA scaffold was synthesized on a planar glass support substrate via surface-initiated atomic transfer radical polymerization, followed by the immersion of the TEGDMA-coated glass substrate in a solution of AuNPs prepared via conventional wet-chemical synthesis. This led to the strong attachment of AuNPs to the TEGDMA nanolobes, which was confirmed by the UV absorption peak at 527 nm, due to localized surface plasmon resonance of AuNPs. More importantly, the nanolobe architecture facilitates nanoparticle trapping while allowing molecular access to the nanoparticle surface. This enabled us to further functionalize the incorporated AuNPs with thrombin binding aptamer and utilize the biofunctionalized polymer-nanoparticle composite as a thrombin sensor. The synergistic combination of metallic nanoparticles acting as a sensing module with a nonfouling polymer matrix acting both as a nonrigid scaffold and to screen biomolecules allowed the detection of thrombin with good sensitivity down to 0.01 ng/mL with a linear range over three orders of magnitude. Our work paves the way for the fabrication of reliable biomolecular sensors based on the polymer brush-nanoparticle architecture.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼