RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of Silane-based Impregnation Agent on the Permeability of Concretes

        Baoju Liu,Jiali Qin,Minghua Sun 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.8

        Three types of silane-based impregnation agent (short for SIA) are used to treat the concrete surface, and the influence of water/ binder (W/B) ratio, mineral admixtures, curing methods, the type and dosage of SIA on the capillary water absorption and electric flux of concretes is examined. Results show that the penetration depth of SIA increases with the increasing of the W/B ratio and SIA dosage, and is related to the type of SIA. Surface treatment by SIA can reduce capillary water absorption and electric flux of concretes, the W/B ratio and curing methods are no longer the main factor, the increasing of the SIA dosage can further improve the surface protection effect of concrete. Mineral admixtures improve the compactness of concretes, and the combined effects of surface treatment and admixtures can evidently enhance the impermeability of concrete. Different types of SIAs have different mechanisms of action on the surface treatment of concrete, and thus have different impacts on the permeability of concrete. The concrete treated by SIA2 with the effects of the penetration and the formation of surface film layer has lower permeability.

      • KCI등재

        Constraints on Biotic and Abiotic Role in the Formation of Fe-Si Oxides from the PACMANUS Hydrothermal Field

        Yang Baoju,Zeng Zhigang,Qi Haiyan,Wang Xiaoyuan,Ma Yao,Rong Kunbo 한국해양과학기술원 2015 Ocean science journal Vol.50 No.4

        Fe-Si oxide deposits were recovered from the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field in Eastern Manus basin. Samples were loose and fragile. Optical and scanning electron microscopy showed that the samples had abundant rod-like or twisted filamentous and granular structures. Electron probe microanalysis revealed that these filaments and grains were mainly composed of Fe and Si. The presence of spherical grains on the surface of the filaments suggests the intergrowth of biotic and abiotic reactions. Biotic and abiotic kinetics competition always exists in the redox gradient. Based on the physico-chemical conditions of PACMANUS hydrothermal fluids, we calculated a strict abiotic oxidation rate of Fe2+ to Fe3+, which is approximately 0.0123 g/min. If the fluids had been erupting consistently and the concentration of Fe2+ was constant, 3.232 kg per year of Fe would be deposited in this vent. The amount of Fe oxides around the studied vent was larger than the amount determined by strict abiotic kinetic calculation. Bacteria may also play an important role in Fe oxidation. A mesh-like microenvironment constructed by biogenic filaments ensured adequate Fe2+ and low oxygen content for the growth of bacteria. Moreover, this structure promoted the deposition of abiotic Fe-Si oxides.

      • Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

        Liu, Baoju,Tan, Jinxia,Shi, Jinyan,Liang, Hui,Jiang, Junyi,Yang, Yuanxia Techno-Press 2021 Advances in concrete construction Vol.11 No.3

        Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

      • Effect of cement as mineral filler on the performance development of emulsified asphalt concrete

        Liu, Baoju,Wu, Xiang,Shi, Jinyan,Wu, Xiaolong,Jiang, Junyi,Qin, Jiali Techno-Press 2020 Advances in concrete construction Vol.10 No.6

        Cold-mixed asphalt mixture is a widely recommended asphalt pavement materials with potentially economic and environmental benefits. Due to the reduction of natural non-renewable mineral resources, powder minerals with similar properties are considered as new mineral fillers in asphalt mixtures. This study explored the feasibility of using cement to replace natural limestone powder (LP) in emulsified asphalt concrete modified by styrene-butadiene styrene copolymer. The experimental tests, including compressive strength, Marshall stability as well as moisture susceptibility test, were used to investigate the mechanical properties, the Marshall stability, flow value, as well as the moisture damage. In addition, the influence of material composition on the performance of asphalt concrete is explained by the microstructure evolution of the pore structure, the interface transition zone (ITZ), and the micromorphology. Due to mineralogical reactivity of cement, its replacement part of LP improved the mechanical properties, Marshall stability, but it will reduce the moisture susceptibility and flow value. This is because with the increase of the cement substitution rate, the pore structure of the asphalt concrete is refined, the width of ITZ becomes smaller, and the microstructure is more compact. In addition, asphalt concrete with a larger nominal particle size (AC-16) has relatively better performance.

      • KCI등재

        Enhancement of thermal-electrical like response by flexoelectric effect in sodium bismuth titanate bilayer ceramics with compositional inhomogeneity

        Xu Rui,Xia Baoju,Jeong Dae-Yong,Chu Baojin 한국세라믹학회 2024 한국세라믹학회지 Vol.61 No.1

        Owing to the difference in the thermal expansion coefficients of the ceramics with different compositions, ceramics with a compositional gradient generate the macroscopic strain gradient during sintering process, which may generate a macroscopic internal electric potential by the flexoelectric effect. Here we show that the bilayer Na0.5Bi0.5TiO3-based ceramics with high electrical conductivity exhibits a thermal-electrical like response, which are larger than that of the single-layer ceramics. We propose that if the surfaces and the interface layer of the bilayer ceramics are inhomogeneously deformed under the influence of the temperature and compositional gradient, the bilayer ceramics can generate the flexoelectric-like response. The coupling of conductivity with this response results in the thermal-electrical like response.

      • SCIESCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼