RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Comparative Analysis of Wind Power Energy Potential at Two Coastal Locations in Bangladesh

        Asif Islam,Mohammad Mahmudur Rahman,Mohammad Shariful Islam,Satya Sundar Bhattacharya,김기현 한국대기환경학회 2015 Asian Journal of Atmospheric Environment (AJAE) Vol.9 No.4

        In this study, wind conditions and its energy potential have been assessed by conducting a Weibull analysis of the wind speed data (over the period of 2002-2011) measured from a port city (Mongla) and an isolated island (Sandwip) in Bangladesh. The monthly mean wind speed at Mongla ranged from 1.60 m/s (December) to 2.47 m/s (April). The monthly values of Weibull shape parameter (k) were from 1.27 to 2.53. In addition, the values of the scale parameter (c) and the monthly wind power density ranged from 1.76 to 2.79 m/s and 3.95 to 17.45 W/ m2, respectively. The seasonal mean wind speed data varied from 1.72 (fall) to 2.29 m/s (spring) with the wind power density from 5.33 (fall) to 14.26 W/ m2 (spring). In the case of Sandwip, the results were comparable to those of Mongla, but moderate reductions in all the comparable variables were observed. The wind data results of these two areas have been compared with those of eight other locations in the world with respect to wind power generation scale. According to this comparison, the wind power generation scale for Mongla and Sandwip was adequate for stand-alone small/micro-scale applications such as local household consumption, solar-wind hybrid irrigation pumps, and battery charging.

      • KCI등재

        All-optical Signal Processing of Fiber Impairments in Dual-Polarization 112 Gbit/s m-ary QAM Coherent Transmission

        Rameez Asif,Muhammad Khawar Islam,Muhammad Zafrullah 한국광학회 2013 Current Optics and Photonics Vol.17 No.1

        We have numerically implemented a receiver side all-optical signal processing method, i.e. optical backward propagation (OBP), by dispersion compensating fiber (DCF) and non-linear compensator (NLC)devised by effective negative Kerr non-linear coefficient using two highly non-linear fibers (HNLFs). The method is implemented for the post-processing of fiber transmission impairments, i.e. chromatic dispersion (CD) and non-linearities (NL). The OBP module is evaluated for dual-polarization (DP) m-ary (m=4,16,32,64,256)quadrature amplitude modulation (QAM) in 112 Gbit/s coherent transmission over 1200 km standard single mode fiber (SMF). We have also investigated an intensity limited optical backward propagation module (IL-OBP) by using a self-phase modulation-based optical limiter with an appropriate pre-chirping to compensate for the intensity fluctuations in the transmission link. Our results show that in highly non-linear sensitive 256QAM transmission, we have observed a 66% increase in the transmission distance by implementing IL-OBP as compared to conventional OBP.

      • KCI등재

        Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite

        Muhammad Irfan,M.U. Islam,Irshad Ali,M. Asif Iqbal,Nazia Karamat,Hasan M. Khan 한국물리학회 2014 Current Applied Physics Vol.14 No.1

        Y2O3 doped Y-type composite hexa-ferrites Sr2MnNiFe12O22 þ xY2O3 (x ¼ 0 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%) were synthesized successfully using sol-gel auto combustion technique. X-ray diffraction analysis reveals Y-type hexagonal structure with few traces of secondary phases. The decrease in grain size as a function of Yttrium content is attributed to the fact that Yttrium acts as a grain inhibitor. The DC resistivity was observed to increase with increasing Yttrium-contents due to the unavailability of Fe3þ ions at octahedral sites. Activation energy showed that the samples with high resistivity have high value of activation energy and vice versa. Permittivity decreases with the increase of frequency following MaxwellWagner Model. In addition, the doped samples exhibit very low dielectric constant and low loss tangent in frequency range 20 Hze1 MHz. The sample x ¼ 5 wt% exhibit the lowest value of dielectric constant. The variation in imaginary part of dielectric constant and loss tangent with frequency show normal dielectric behavior for all the samples. The frequency dependent ac conductivity increases with increase in frequency and decrease with Y2O3 doping. These characteristics may be suitable for their potential applications in electromagnetic attenuation materials and microwave devices. The conductivity mechanism so determined was hopping mechanism. The dc resistivity of the doped ferrites measured in our case is about 1010 U-cm that meets the requirement for fabrication of components by electroplating.

      • KCI등재후보

        Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

        Md Tahsin Khan,Araf Mahmud,Md. Muzahidul Islam,Mst. Sayedatun Nessa Sumaia,Zeaur Rahim,Kamrul Islam,Asif Iqbal Korea Genome Organization 2023 Genomics & informatics Vol.21 No.3

        Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼