RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        에멀젼형 오일 수용액에 관한 정밀여과 특성

        정건용,김재진,김규진,Fane, Anthony G. 한국막학회 1998 멤브레인 Vol.8 No.4

        에멀젼형 절삭유(Caltex, Trusol) 수용액을 공칭 세공크기가 0.22μm 인 Millipore사의 GVHP 막과 0.2μm인 SUS 관형막(Mott 사)이 설치된 dead-end 및 십자형흐름 정밀여과 시스템으로 각각 분리하였다. 오일입자의 분포는 0.07 내지 0.22μm의 분포이었다. 투과유속을 예측하기 위하여 cake 여과모델 (CFM)과 standard pore blocking 모델(SPBM)을 적용하였다. Dead-end 시스템에서 0.01 vol% 절삭유 수용액을 400 rpm으로 교반시켜 투과시킬 경우, 100 kPa 이하에서는 CFM 이 투과유곡을 잘 나타내었으나, 150 kPa 이상에서는 SPBM을 적용할 수 있었다. 운전압력을 60에서 200 kPa로 갑자기 증가시키면 분리막 표면에 형성된 오일층이 파괴되고, 다시 60 kPa로 감소시킬 때 반복하여 오일층이 형성됨을 알 수 있었다. 투과기구가 CFM에서 SPBM 으로 전환되는 이른바 임계압력을 추정하였으며, dead-end system에서는 약 100 kPa이었다. Reynolds 수가 7080인 십자형흐름 시스템에서 농도를 0.01에서 0.03 vol%로 증가시키면 입계압력이 약 100에서 150 kPa로 증가하였다. The cutting oil emulsion microfiltration was carried out on dead-end call and crossflow systems equipped with 0.22 μm GVHP Millipore and 0.2 m. Cake filtration(CFM) and standard pore blocking models(SPBM) were applied to predict the permeation flux. The permeation fluxes of 0.01 vol% oil emulsion followed CFM for dead-end system very well under the condition of 400 rpm and below 100 kPa. The SPBM was, however, suitable for the permeation flux at 400 rpm and above 150 kPa. The oil layer on the membrane surface was destroyed and reproduced repeatedly as operating pressure was suddenly changed from 60 to 200 kPa, and then returned to 60 kPa. Also, we estimated the critical entry pressure(CEP) which is changed from CFM to SPBM, and CEP for dead-end system was around 100 kPa. The CEP increased from around 100 to 150 kPa for the crossflow system as the oil concentration increased from 0.01 to 0.03 vol% when Reynolds number was 7080.

      • 해수담수화에서의 분리막을 이용한 자원회수

        정상현,임승주,Gayathri Naidu,최영권,정다운,장암,Anthony G. Fane,Saravanamuthu Vigneswaran 한국막학회 2018 한국막학회 총회 및 학술발표회 Vol.2018 No.05

        The ultimate goal of seawater reverse osmosis brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb⁺) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb⁺ sorption. The integrated MD-KCuFC (PAN) system with periodic membrane cleaning, enabled 65% water recovery. A stable MD permeate flux was achieved with good quality permeate. KCuFC (PAN) showed a high regeneration and reuse capacity. Ammonium chloride air stripping followed by resorcinol formaldehyde resin filtration enabled to recover Rb⁺ from the desorbed solution.

      • KCI등재

        Biofouling control potential of tannic acid, ellagic acid, and epigallocatechin against Pseudomonas aeruginosa and reverse osmosis membrane multispecies community

        Muhammad Faisal Siddiqui,오현석,Miles Rzechowicz,Harvey Winters,Tzyy Haur Chong,Anthony G. Fane 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.30 No.-

        Exploring novel biological strategies to mitigate membrane biofouling is of great worth in order to allowsustainable performance of membrane systems for wastewater treatment. Here, the optimal biofilmprevention potential of three phenolic compounds, viz. tannic acid (TA), ellagic acid (EA), andepigallocatechin (EG) on polystyrene microtiter plate, glass surface, and reverse osmosis (RO) membranecoupons was investigated using Pseudomonas aeruginosa PAO1 and RO multispecies community. Biofilmformation was qualitatively and quantitatively assessed by crystal voilet assay and confocal microscopy[bacterial cells and the components of extracellular polymeric substances (EPS)]. The three phenoliccompounds had different optimal concentrations (TA 100 mg/L, EA 200 mg/L, and EG 200 mg/L) forbiofilm control. Biofilm control was correlated with a reduction in EPS. The three phenolic compoundshad no dispersal effect on 24 h-old PAO1 biofilms. Phenolic compounds also reduced multispeciesbiofilm formation of RO community. The data present strong evidence for the application of thesephenolic compounds for the prevention of biofouling in an industrial setting.

      • SCISCIESCOPUS

        Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes

        Oh, Hyun-Suk,Tan, Chuan Hao,Low, Jiun Hui,Rzechowicz, Miles,Siddiqui, Muhammad Faisal,Winters, Harvey,Kjelleberg, Staffan,Fane, Anthony G.,Rice, Scott A. Pergamon Press 2017 Water research Vol.112 No.-

        <P><B>Abstract</B></P> <P>Over the last few decades, significant efforts have concentrated on mitigating biofouling in reverse osmosis (RO) systems, with a focus on non-toxic and sustainable strategies. Here, we explored the potential of applying quorum quenching (QQ) bacteria to control biofouling in a laboratory-scale RO system. For these experiments, <I>Pantoea stewartii</I> was used as a model biofilm forming organism because it was previously shown to be a relevant wastewater isolate that also forms biofilms in a quorum sensing (QS) dependent fashion. A recombinant <I>Escherichia coli</I> strain, which can produce a QQ enzyme, was first tested in batch biofilm assays and significantly reduced biofilm formation by <I>P. stewartii</I>. Subsequently, RO membranes were fouled with <I>P. stewartii</I> and the QQ bacterium was introduced into the RO system using two different strategies, direct injection and immobilization within a cartridge microfilter. When the QQ bacterial cells were directly injected into the system, <I>N-</I>acylhomoserine lactone signals were degraded, resulting in the reduction of biofouling. Similarly, the QQ bacteria controlled biofouling when immobilized within a microfilter placed downstream of the RO module to remove QS signals circulating in the system. These results demonstrate the proof-of-principle that QQ can be applied to control biofouling of RO membranes and may be applicable for use in full-scale plants.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A recombinant Quorum Quenching (QQ) bacterium controlled biofilm formation. </LI> <LI> Direct injection of QQ bacteria in a lab-scale RO system mitigated biofouling. </LI> <LI> QQ bacteria controlled biofouling when immobilized within a microfilter cartridge. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼