RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System

        황태진,강세권,정광호,박소아,이미연,김경주,오도훈,배훈식,서태석,Hwang, Tae-Jin,Kang, Sei-Kwon,Cheong, Kwang-Ho,Park, So-Ah,Lee, Me-Yeon,Kim, Kyoung-Ju,Oh, Do-Hoon,Bae, Hoon-Sik,Suh, Tae-Suk Korean Society of Medical Physics 2009 의학물리 Vol.20 No.4

        세기조절방사선치료(IMRT)뿐만 아니라 3차원 입체조형치료(3D-CRT)와 같이 광자선을 이용한 방사선 치료 기술은 방사선을 받아야 하는 표적의 면적을 충분히 증가시키면서, 동시에 정상 조직은 방사선으로부터 보호하기 위하여 정확한 선량 계산을 필요로 한다. Jaw 콜리메이터와 다엽 콜리메이터가 그러한 목적을 위해서 사용되어 왔다. 우리 기관에서 사용하는 피나클 치료계획시스템은 모델기반의 광자선량 알고리듬을 사용하기 때문에 Jaw 콜리메이터 투과계수(JTF)와 다엽 콜리메이터 투과계수(MLCTF)와 같은 모델변수들의 집합이 측정된 데이터로부터 결정된다. 그러나, 이러한 자동모델화과정에 의해서 얻어진 모델변수들이 직접 측정하여 얻은 것들과 다를 수 있는데, 이는 선량분포에 영향을 줄 수 있다. 그래서, 이 연구에서 우리는 피나클 치료계획시스템에서 자동모델화과정에 의해 얻은 JTF와 MLCTF를 평가하였다. 먼저 우리는 이 연구에서 Jaw 콜리메이터 투과계수(JTF)와 다엽 콜리메이터 투과계수(MLCTF)를 직접 측정하여 얻었는데, 이것은 물팬톰 내 기준깊이에서 조사면이 $0{\times}0\;cm^2$일 때의 선량과 $10{\times}10\;cm^2$일 때의 선량의 비로 얻었다. 또한, JTF와 MLCTF는 치료계획시스템내 자동모델화 과정에 의해서도 얻어서, 이 값들이 3차원 입체조형치료시에 선량에 어떠한 영향을 끼치는지 팬톰 연구와 환자 연구를 통해서 평가하였다. 직접 측정한 경우 JTF는 6 MV의 경우에 0.001966, 10 MV의 경우에는 0.002971이었고, MLCTF는 6 MV의 경우에 0.01657, 10 MV의 경우에 0.01925이었다. 한편, 자동모델화 과정에 의해 얻은 경우, JTF는 6 MV의 경우에 0.001983, 10 MV의 경우에는 0.010431이었고, MLCTF는 6 MV의 경우에 0.00188, 10 MV의 경우에 0.00453이었다. JTF와 MLCTF의 경우에 직접 측정한 것은 자동모델화 과정에 의해 얻은 값과 큰 차이를 보였으나, 6 MV와 10 MV의 선질을 고려하면, 보다 합리적이었고, 이러한 값의 차이는 낮은 선량의 영역에서 선량에 영향을 미쳤다. JTF와 MLCTF의 잘못된 값은 선량의 오차를 다소 발생시킬 수도 있기 때문에, JTF와 MLCTF를 자동모델화과정에 의해서 얻은 값과 직접 측정하여 얻은 값을 비교하는 것은 빔커미셔닝 단계에서 도움이 될 것이다. Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

      • KCI등재

        Implementation and Evaluation of the Electron Arc Plan on a Commercial Treatment Planning System with a Pencil Beam Algorithm

        강세권,박소아,황태진,정광호,이미연,김경주,오도훈,배훈식,Kang, Sei-Kwon,Park, So-Ah,Hwang, Tae-Jin,Cheong, Kwang-Ho,Lee, Me-Yeon,Kim, Kyoung-Ju,Oh, Do-Hoon,Bae, Hoon-Sik Korean Society of Medical Physics 2010 의학물리 Vol.21 No.3

        현재 이용되고 있는 상용 치료 계획시스템은 대부분의 치료용 선형가속기가 제공하는 전자선 회전 방식의 치료 기능을 제공하지 않고 있으며, 이것은 전자선 회전 치료가 널리 이용되지 못하는 한 가지 원인이 되기도 한다. 본 연구에서는 Varian 21-EX에 대해, pencil beam 기반의 Pinnacle3 (ver. 7.4f)를 이용한 전자선 회전 치료를 위한 커미셔닝을 한 후, 치료 계획을 세웠으며, 그 정확도를 평가해 보았다. 회전 빔은 폭이 일정한 조사빔을 규칙적으로 반복해서 구현하였으며, 필름과 점 선량을 측정하였다. 치료계획 시스템의 모델링 단계에서, 측정된 깊이 선량분포는 모델링의 계산과 1% 내에서 일치하였으나, 가로 선량분포의 경우에는 모델링 계산이 측정보다 작아서, 50% 선량값을 기준으로 할 때, 6 MeV는 distance-to-agreement (DTA) 값이 5.1 mm, 12 MeV의 경우에는 6.7 mm이었다. 인체모형 팬텀을 대상으로한 점 선량 및 필름 측정의 경우, 계산과 측정은 10% 이상의 차이를 보였다. Pencil beam 기반의 전자선 회전 치료 계획은 정량적인 기준으로 삼기에는 부족해서 선량 분포에 대한 정성적인 참고에만 머물러야 하며, 환자 치료 전에 측정을 통해 선량 확인이 필요하다. Less execution of the electron arc treatment could in large part be attributed to the lack of an adequate planning system. Unlike most linear accelerators providing the electron arc mode, no commercial planning systems for the electron arc plan are available at this time. In this work, with the expectation that an easily accessible planning system could promote electron arc therapy, a commercial planning system was commissioned and evaluated for the electron arc plan. For the electron arc plan with use of a Varian 21-EX, Pinnacle3 (ver. 7.4f), with an electron pencil beam algorithm, was commissioned in which the arc consisted of multiple static fields with a fixed beam opening. Film dosimetry and point measurements were executed for the evaluation of the computation. Beam modeling was not satisfactory with the calculation of lateral profiles. Contrary to good agreement within 1% of the calculated and measured depth profiles, the calculated lateral profiles showed underestimation compared with measurements, such that the distance-to-agreement (DTA) was 5.1 mm at a 50% dose level for 6 MeV and 6.7 mm for 12 MeV with similar results for the measured depths. Point and film measurements for the humanoid phantom revealed that the delivered dose was more than the calculation by approximately 10%. The electron arc plan, based on the pencil beam algorithm, provides qualitative information for the dose distribution. Dose verification before the treatment should be mandatory.

      • KCI등재

        콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석

        정광호,박소아,강세권,황태진,이미연,김경주,배훈식,오도훈,Cheong, Kwang-Ho,Park, So-Ah,Kang, Sei-Kwon,Hwang, Tae-Jin,Lee, Me-Yeon,Kim, Kyoung-Joo,Bae, Hoon-Sik,Oh, Do-Hoon 한국의학물리학회 2010 의학물리 Vol.21 No.4

        본 연구에서는 콘빔 단층촬영영상(cone beam CT; CBCT) 및 다엽 콜리메이터(multileaf collimator;MLC) 로그데이터를 이용한 적응형 방사선치료기법의 체계를 구축하고, 그 과정에서의 선량 계산 오차의 양상을 팬텀을 이용하여 분석하고자 하였다. Catphan-600 (The Phantom Laboratory, USA) 팬텀을 CT와 CBCT 촬영 후 CT 영상을 이용하여 간단한 단계별조사(step-and-shoot) 방식의 세기조절방사선치료(intensity-modulated radiation therapy; IMRT) 계획을 수립하였다. 이후 빔전달 시 생성된 MLC 로그데이터(Dynalog)를 이용하여 실제 전달된 세그먼트 별 모니터단위(MU) 가중치와 MLC 엽(leaf)의 위치를 구한 후 이를 다시 Pinnacle3에 넣고 선량을 재계산하였다. 초기 치료 계획은 치료 계획용 CT 영상($CT_{plan}$) 및 CBCT 영상($CBCT_{plan}$)에 대하여 계산되었으며, 재구성된 선량 역시 치료 계획용 CT 영상($CT_{recon}$) 및 CBCT 영상($CBCT_{recon}$)에 대하여 계산되었다. 각 선량 계산을 $CT_{plan}$을 기준으로 하여 2차원 선량분포, 감마 인덱스, 선량-부피 히스토그램(dose-volume histogram; DVH)을 이용하여 분석하였다. 2차원 선량분포 및 DVH 분석 모두에서 원래의 치료 계획보다 실제 전달된 선량이 다소 많은 것으로 나타났으나 임상적인 의미는 미미했다. 감마 인덱스의 경우 CBCT에 선량을 계산했을 때 치료 계획 정보나 재구성된 선량 정보를 이용한 경우 모두 오차가 크게 발생했다. 재구성된 선량은 빔의 경계 부분에서 오차가 크게 발생하였으나 그 영향은 CT 및 CBCT 영상 간 차이에 의한 것보다 작았다. CBCT 영상에 전달된 선량을 재구성하게 되면 두 영향이 복합적으로 작용하여 오차는 더 줄어들게 되지만 $CT_{plan}$과 $CBCT_{plan}$의 차이에 비하여 $CBCT_{plan}$과 $CBCT_{recon}$ 차이는 상대적으로 작아 전달된 선량의 오차를 평가할 때 불확실성이 커졌다. 그러므로 선량 계산 오차의 양상은 셋업 오차, CBCT 영상을 이용한 선량 계산 오차 및 재구성된 선량 계산의 오차로 나누어 분석될 필요가 있을 것이다. We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

      • KCI등재

        Dose Verification Study of Brachytherapy Plans Using Monte Carlo Methods and CT Images

        정광호,이미연,강세권,배훈식,박소아,김경주,황태진,오도훈,Cheong, Kwang-Ho,Lee, Me-Yeon,Kang, Sei-Kwon,Bae, Hoon-Sik,Park, So-Ah,Kim, Kyoung-Joo,Hwang, Tae-Jin,Oh, Do-Hoon Korean Society of Medical Physics 2010 의학물리 Vol.21 No.3

        대다수의 근접치료용 방사선치료계획장치는 AAPM TG-43의 계산식에 기반을 둔 선량계산 알고리듬을 적용하고 있으나 이는 조직의 비균질성을 적절히 고려하지 못한다. 본 연구에서는 몬테칼로 방법을 이용하여 강내고선량근접치료계획을 검증하는 체계를 구축하고자 하였으며, 특히 환자의 CT 영상을 이용하여 물질정보로 변환한 후 직접 몬테칼로 계산을 수행하는 방법의 타당성에 초점을 맞추었다. 판형 팬텀 및 자궁경부암 환자의 CT 영상을 Plato (Nucletron, Netherlands) 치료계획장치를 이용하여 근접치료계획을 수행한 후 여기서 얻어진 인자들을 이용하여 EGSnrc 기반의 DOSXYZnrc 코드로 몬테칼로 계산을 수행하였으며, EBT 필름측정 결과와 비교하였다. DOSXYZnrc 코드의 선원 모델링 특성 상 후장전 장치의 $^{192}Ir$ 선원들을 직육면체 형태로 근사화하여 모델링하였으며 계산 시 체적소의 크기는 $2{\times}2{\times}2\;mm^3$로 하였다. 균질 매질 내에서는 TG-43 기반의 선량계산 결과와 몬테칼로 선량계산 결과가 잘 일치함을 확인할 수 있었으나 고밀도 물질이 포함된 비균질 매질 내에서는 오차가 커졌다. 환자의 경우 A점 및 B점의 오차는 3% 이내, 평균선량 오차는 5% 정도였다. 그러나 기존 선량계산 알고리듬의 경우 고밀도 물질의 영향을 적절히 고려하지 못하여 표적의 선량을 과대평가하여 실제로는 더 적은 선량이 들어갈 우려가 있다. 본 연구에서 제안된 선량계산 검증체계는 타당하며 선량 계산 결과도 실제와 잘 일치함을 확인할 수 있었다. 또한 기존의 선량계산 알고리듬으로 계산된 치료계획결과를 확인할 경우에는 주의가 필요하며, 몬테칼로 방법과 같은 독립적인 검증 시스템이 유용할 것이다. Most brachytherapy treatment planning systems employ a dosimetry formalism based on the AAPM TG-43 report which does not appropriately consider tissue heterogeneity. In this study we aimed to set up a simple Monte Carlo-based intracavitary high-dose-rate brachytherapy (IC-HDRB) plan verification platform, focusing particularly on the robustness of the direct Monte Carlo dose calculation using material and density information derived from CT images. CT images of slab phantoms and a uterine cervical cancer patient were used for brachytherapy plans based on the Plato (Nucletron, Netherlands) brachytherapy planning system. Monte Carlo simulations were implemented using the parameters from the Plato system and compared with the EBT film dosimetry and conventional dose computations. EGSnrc based DOSXYZnrc code was used for Monte Carlo simulations. Each $^{192}Ir$ source of the afterloader was approximately modeled as a parallel-piped shape inside the converted CT data set whose voxel size was $2{\times}2{\times}2\;mm^3$. Bracytherapy dose calculations based on the TG-43 showed good agreement with the Monte Carlo results in a homogeneous media whose density was close to water, but there were significant errors in high-density materials. For a patient case, A and B point dose differences were less than 3%, while the mean dose discrepancy was as much as 5%. Conventional dose computation methods might underdose the targets by not accounting for the effects of high-density materials. The proposed platform was shown to be feasible and to have good dose calculation accuracy. One should be careful when confirming the plan using a conventional brachytherapy dose computation method, and moreover, an independent dose verification system as developed in this study might be helpful.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼