RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of Two New Races of Podosphaera xanthii Causing Powdery Mildew in Melon in South Korea

        홍예지,Mohammad Rashed Hossain,김효택,박종인,노일섭 한국식물병리학회 2018 Plant Pathology Journal Vol.34 No.3

        Powdery mildew caused by the obligate biotrophic fungus Podosphaera xanthii poses a serious threat to melon (Cucumis melo L.) production worldwide. Frequent occurrences of the disease in different regions of South Korea hints at the potential existence of several races which need to be identified. The races of five isolates collected from different powdery mildew affected regions were identified based on the pathogenicity tests of these isolates on eight known differential melon cultigens namely, SCNU1154, PMR 45, WMR 29, PMR 5, MR-1, PI124112, Edisto 47 and PI414723. None of the isolates have shown same disease responses to those of the known races tested in this study and in previous reports on these identical differential melon cultigens. This indicates that the tested uncharacterized isolates are new races. Among the isolates, the isolates from Hadong, Buyeo, Yeongam and Gokseong have shown same pathogenicity indicating the possibility of these isolates being one new race, for which we propose the name ‘race KN1’. The isolate of Janghueng have also shown unique disease response in the tested differential melon cultigens and hence, we identified it as another new race with a proposed name ‘race KN2’. Report of these new races will be helpful in taking effective control measures in prevalent regions and for future breeding programs aimed at developing varieties that are resistant to these race(s).

      • KCI등재

        Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato

        강송이,Md Abdur Rahim,Khandker Shazia Afrin,정희정,김효택,박종인,노일섭 한국원예학회 2018 Horticulture, Environment, and Biotechnology Vol.59 No.3

        Tomato (Solanum lycopersicum L.) is one of the most important and popular vegetables worldwide. A wide range of tomato cultivars with different colored fruits is presently available. The purple peel of tomato fruit is due to the accumulation anthocyanin pigments, which are beneficial to both plants and humans. Cultivated tomatoes normally do not make anthocyanin in their fruit peel, but there are some wild relatives of cultivated tomato like Solanum chilense, S. habrochaites, S. cheesmanii, and S. lycopersicoides that do produce anthocyanins in their fruits. In this study, the purple fruit color was obtained by crossing ‘OSU blue’ (blue fruit) and ‘Purple mini’ (brown fruit) and subsequent self-pollination. Anthocyanins are produced via the flavonoid pathway and are regulated by the transcriptional complex of MYB, bHLH, and WD40 repeats transcription factors. We determined the expression profiles of genes related to anthocyanin biosynthesis in tomato genotypes with distinct fruit colors by qRT-PCR. Both the early and late biosynthetic genes of the anthocyanin pathway were up-regulated in the peels of purple tomato fruits, except Sl5GT. Moreover, the expression of the regulatory genes SlANT1 and SlAN1 was dramatically increased in the peels of purple tomato fruits. These results indicate that SlANT1 and SlAN1 might play an important role on anthocyanin biosynthesis in the peels of purple-fruited tomatoes via up-regulation of structural genes in the anthocyanin pathway.

      • KCI등재

        Screening of melon genotypes identifies gummy stem blight resistance associated with Gsb1 resistant loci

        Md Zahid Hassan,Arif Hasan Khan Robin,Md Abdur Rahim,Sathishkumar Natarajan,김효택,박종인,노일섭 한국식물생명공학회 2018 JOURNAL OF PLANT BIOTECHNOLOGY Vol.45 No.3

        Gummy stem blight (GSB) is one of the most destructive and economically important, soil borne diseases of melon caused by the ascomycete fungus, Didymella bryoniae throughout the world. In Korea, however, no GSB resistant genotype has been reported yet. The study aimed to identify GSB resistant melon germplasm. We screened a total of 60 genotypes including 16 lines and 44 melon cultivars collected from USA and Korea. Among the 16 melon lines, four lines including ‘PI482399’, ‘PI140471’, ‘PI136170’ and ‘PI420145’, and two Korean cultivars viz. ‘Asia Papaya’ and ‘Supra’ showed complete resistance. We were aware that both genotypic and environmental variations could influence the phenotypic screening of resistance and susceptibility. We therefore, further assessed all genotypes using 20 SSR markers. The SSR marker ‘CMCT505’ linked to Gsb1 in chromosome 1 perfectly grouped resistant and susceptible lines indicating that resistance is probably due to the presence of Gsb1 gene. Cloning and sequencing of resistant and susceptible Gsb1 amplicons showed that there were 32-bp deletions in resistant line and 39-bp deletions in resistant cultivar compared to susceptible one. Thus, the resistant melon lines and cultivars identified in this study could be recommended for the melon breeding program. Furthermore, the SSR marker ‘CMCT505’ which is tightly linked with Gsb1 could be used for molecular screening of melon germplasm.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼