http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
CMT를 이용한 Stellite 6 육성용접의 기초 연구
이충우,김지선,김영찬,백경윤 한국기계기술학회 2023 한국기계기술학회지 Vol.25 No.5
It is essential to select materials with excellent mechanical properties to prevent chemical and mechanical damage to the surfaces of materials used in machines and structures and to extend their lifespan. Co-based stellite alloy, which has wear resistance, heat resistance, and corrosion resistance, is essential for products used in harsh environments. However, due to the problem of enormous costs, research on hard facing, which uses a stellite coating layer only on the contact surface, is urgently required. Currently, high-facing research on Stellite coating layers is focused on powder, and GMAW research using wire is relatively lacking. In this study, welding experiments were performed to form stable weld beads using stellite 6 welding wire, and the correlation between parameters and weld beads was analyzed. A CMT welder was used to minimize the heat effect on the base material.
Md. R. U. Ahsan,Taehoon Kim,Duck bong Kim,Changwook Ji,Yeong-Do Park 대한용접·접합학회 2018 대한용접·접합학회지 Vol.36 No.5
In this paper, weldability of cold metal transfer (CMT) gas metal arc welding is studied for welding conditions with gap and offset for two different wire composition and strength. The two wires used have different surface tensions and viscosities due to the presence of differing amounts of sulfur and titanium, respectively. The difference in strength is induced mechanically during the wire drawing process. Surface tension and viscosity directly result in the wettability of molten metal, which in turn affects the gap bridging and weldability with offset. Experiments suggest that high viscosity and surface tension result in weld bead with higher elevation and a better gap-bridging ability. However, low viscosity and surface tension result in better wettability, which leads to better weldability with a higher offset. The understanding derived from this research can facilitate the development of welding consumables suitable for welding conditions with various offset and gaps.