http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement
Wu, Yulin,Yuan, Huijing,Shao, Jie,Liu, Shuhong Korean Society for Fluid machinery 2009 International journal of fluid machinery and syste Vol.2 No.2
The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.
Yulin Wu,Qianqian Dong,Jian He,Qiyang Chen 대한토목학회 2023 KSCE JOURNAL OF CIVIL ENGINEERING Vol.27 No.3
To investigate the tensile failure phenomenon of rock masses with filled natural defects, the mechanical behavior of 3D printed rock-like materials containing filled kinked fissures under uniaxial tension was identified. Different inclination angles of branch fissure were considered, and cement and gypsum slurry were selected as the infilling materials. It was found that filling materials enhanced the strength of the specimen, which presented to be cement filling > gypsum filling > no filling. The change of inclination angle of branch fissure had significant influence on the strength and failure mode of the specimen and the strength order was -135o> -45o > 90o and +45o > 90o > +135o. Two types of failure pattern, namely tip failure and non-tip failure, were observed in the experiment. Three types of newborn cracks were identified using a high-speed camera. The result achieved by using the digital image correlation technology indicated that different filling conditions led to the position change of high-strain zone. The displacement field of the filled specimen developed from being continuous to being discontinuous. Furthermore, the extended finite element method was adopted to simulate the filled and unfilled specimens, consistent with the experimental results. This study can provide a reliable reference for studying the tensile stress zones in rock exploration.
Numerical analysis of flow in a Francis turbine on an equal critical cavitation coefficient line
Yulin Wu,Jintao Liu,Yuekun Sun,Shuhong Liu,Zhigang Zuo 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.6
Numerical simulation and model test were applied to study the cavitation flow in Francis turbines. The SST k-ω turbulence model and the mixture model were used to simulate the cavitating flow in the Francis turbine. An equal critical cavitation coefficient line was calculated and the flow in the Francis turbine was analyzed. Simulation results show reasonable agreement with the experimental data. It is confirmed that these cavitation model and numerical method is a useful way to study the two-phase cavitation flow in Francis turbines. On the equal critical cavitation coefficient line, the energy loss in the turbine may be caused by the rotating of vortex rope in the draft tube or flow separation in the runner. The study of equal critical cavitation coefficient line can provide a basic guidance for industry practice.
Wu Dongzhe,Shen Yulin,Qu Chaoyi,Huang Peng,Geng Xue,Zhang Jianhong,Rao Zhijian,Wei Qiangman,Liu Shijie,Zhao Jiexiu 한국역학회 2024 Epidemiology and Health Vol.46 No.-
OBJECTIVES In light of the rise in the global aging population, this study investigated the potential of the oxidative balance score (OBS) as an indicator of phenotypic age acceleration (PhenoAgeAccel) to better understand and potentially slow down aging. METHODS Utilizing data from the National Health and Nutrition Examination Survey collected between 2001 and 2010, including 13,142 United States adults (48.7% female and 51.2% male) aged 20 and above, OBS and PhenoAgeAccel were calculated. Weighted generalized linear regression models were employed to explore the associations between OBS and PhenoAgeAccel, including a sex-specific analysis. RESULTS The OBS demonstrated significant variability across various demographic and health-related factors. There was a clear negative correlation observed between the higher OBS quartiles and PhenoAgeAccel, which presented sex-specific results: the negative association between OBS and PhenoAgeAccel was more pronounced in male than in female. An analysis using restricted cubic splines revealed no significant non-linear relationships. Interaction effects were noted solely in the context of sex and hyperlipidemia. CONCLUSIONS A higher OBS was significantly associated with a slower aging process, as measured by lower PhenoAgeAccel. These findings underscore the importance of OBS as a biomarker in the study of aging and point to sex and hyperlipidemia as variables that may affect this association. Additional research is required to confirm these results and to investigate the biological underpinnings of this relationship.
Wei Tingting,Wu Liang,Yu Feng,Lv Yin,Chen Long,Shi Yulin,Dai Bin 한국탄소학회 2019 Carbon Letters Vol.29 No.5
The present work introduces a new method for the recycling of waste flocculation sludge to prepare electrode materials for supercapacitor. Hazardous azo dye was removal from textile dying wastewater by a new chitosan-based flocculant, and the generated dye sludge flocs was used as a nitrogen-containing precursor for the fabrication of N-doped carbon materials. The influence of azo dye on specific surface areas, nitrogen content, pore evolution of the resulting products and their electrochemical performance were investigated in detail. The results demonstrated a dual role of azo dye worked as both a nitrogen resource and pore-forming agent. The resulting N-doped carbon nanosheets derived from azo dye flocs demonstrated high electrochemical capacitance and good stability for supercapacitor electrode, which is attributed to the unique nitrogen doping, higher specific surface area and efficient charge transfer ability.
LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD
Qian Zhongdong,Wu Yulin 한국전산유체공학회 2005 한국전산유체공학회지 Vol.10 No.1
Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.
Role of Estrogen Receptor-α in the Regulation of Claudin-6 Expression in Breast Cancer Cells
Liu Yafang,Wu Qiong,Ren Yue,Xu Xiaoming,Yu Lina,Zhang Mingzi,Zhang Ting,Li Yulin,Quan Chengshi 한국유방암학회 2011 Journal of breast cancer Vol.14 No.1
Purpose: In our previous studies we showed that upregulating claudin-6 (CLDN6) expression may contribute to preventing breast cancer, and that 17β-estradiol induces a concentration- and time-related effect on CLDN6 mRNA and protein expression in MCF-7 cells. However, the mechanisms of 17β-estradiol regulation of CLDN6 are still unclear. We determined the role of estrogen receptors in the regulation of CLDN6 expression in human breast cancer tissues and a cell line. Methods: CLDN6, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) expression in breast cancer tissues were examined using immunohistochemistry. The human breast cancer cell line, MCF-7, which expresses ERα but not ERβ was used. CLDN6 and ERα expression were measured by reverse transcriptase-PCR, Western blotting and immunofluorescent staining. Treatments with propyl pyrazole triol (PPT) and ICI 182, 780 (ICI) were performed. Results: The results revealed that CLDN6 expression was related to ERα in breast cancer tissues (p=0.033). PPT, an ERα-selective ligand, upregulated CLDN6 expression at 10^(-5) mol/L after 24 hours. The effect of PPT on regulating CLDN6 expression in MCF-7 cells was blocked by ICI. Conclusion: These findings suggest that Erα reulates CLDN6 expression in breast cancer tissues and that 17β- estradiol induces CLDN6 expression through an ERα pathway in MCF-7 cells.
LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD
Zhongdong Qian,Yulin Wu Korea Society of Computational Fluids Engineering 2005 한국전산유체공학회지 Vol.10 No.1
Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.