RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Computational Fluid Dynamics Modeling of an Inverted Frustoconical Shaking Bioreactor for Mammalian Cell Suspension Culture

        Haifeng Hang,Yuanxin Guo,Jian Liu,Li Bai,Jianye Xia,Meijin Guo,Matthew Hui 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.3

        We previously developed an inverted frustoconical shaking bioreactor (IFSB) which had high mammalian cell culture performance when compared with a mechanically stirred tank reactor (STR) or a flat-bottom shaking bioreactor (FBSB). Here, we determined the mixing time (t) and volumetric oxygen transfer coefficient (kLa) of this IFSB at various speeds, and simulated the fluid hydrodynamics, including the shear stress and specific surface area, by computational fluid dynamics. The shortest mixing time was observed in a STR. The maximum kLa value of 12/h was achieved in the IFSB at an aeration rate of 4 L/h, demonstrating that our IFSB has enhanced oxygen transfer capabilities needed to meet the demands of mammalian cells. Simulation studies revealed a 3% greater specific surface area and a 21% lower shear strain in the IFSB compared to an FBSB under the same conditions. Additionally, the conical angle of the vessel, which significantly affected cell growth and recombinant protein production,was tested here. We conclude that, compared to the STR and FBSB, the IFSB has an increased liquid surface area for oxygen uptake and exhaust CO_2 stripping,an enhanced k_La for cell robust growth to a high cell density, and a lower shear stress to alleviate cell damage.

      • KCI등재

        High-throughput Screening Strategy Used for Enhanced Production of Pigment by Monascus purpureus D39-4

        Jun Tan,Ju Chu,Wenjuan Shi,Cheng Lin,Yuanxin Guo,Ying-ping Zhuang,Siliang Zhang,Tadayuki Imanaka 한국식품과학회 2012 Food Science and Biotechnology Vol.21 No.6

        Most of the fermentation experiment designs were limited by the low-throughput of shake flask, especially for the medium optimization. A simple high-throughput screening system was developed for the determination of pigment in Monascus purpureus fermentation samples. This downscaled system was designed to optimize medium composition combined with statistical methods. The total 29 experiments designed by the Box–Behnken were used to study the 4 most important operating variables on pigment production. The analysis revealed that the optimum concentrations of glucose, peptone, NaNO3, and KH2PO4were 51.42, 4.91, 1.00, and 1.00 g/L, respectively. A production of 69.5 U/mL was achieved in agreement with the prediction (68.9 U/mL) fermented in 24-deep-well microtiterplates. Furthermore, the fermentation medium optimized in the high-throughput system was verified in shake flasks, and the pigment production could be enhanced from 206.5 U/mL in un-optimized medium to 265.8 U/mL,giving nearly 1.30-fold increase in production.

      • KCI등재

        Prediction of exploration targets based on integrated analyses of source rock and simulated hydrocarbon migration direction: a case study from the gentle slope of Shulu Sag, Bohai Bay Basin, northern China

        Changqing Ren,Fugui He,Xianzhi Gao,Dongsheng Wu,Wenli Yao,Jianzhang Tian,Huiping Guo,Yuanxin Huang,Li Wang,Han Feng,Junwei Li 한국지질과학협의회 2019 Geosciences Journal Vol.23 No.6

        The Shulu Sag which is a rifted sag with NNE trend is located in the south of Jizhong Depression, Bohai Bay Basin, northern China. The gentle slope and three troughs are situated in the west and east of the sag, respectively. Both of the lower part of Shasan Member (Es3x) and the lower part of Shayi Member (Es1x) act as source rocks in this sag. Researches on the type, quantity, quality and thermal maturity of the respective organic matter have been conducted using Rock-Eval pyrolysis data. Type II is the dominant kerogen in Es1x of all troughs. However, Type II1 and III is the dominant kerogen in Es3x of Middle-Southern and Northern trough, respectively. TOC (total organic carbon) and pyrolysis S2 (hydrocarbon) values suggest that the Es1x source rocks in Middle-Southern and Northern trough are fair to good and poor to fair generative potential of hydrocarbon, separately. The Es3x source rocks in Middle-Southern and Northern trough possess fair to excellent and poor to fair generative potential of hydrocarbon, individually. Tmax (pyrolysis temperature at maximum S2) values indicate that most of Es3x samples are thermally mature, but all Es1x samples are thermally immature. Under large scale condition, the hydrocarbon secondary migration in the upper part of Shasan Member (Es3s), Shaer Member (Es2) and the upper part of Shayi Member (Es1s) have been simulated using fluid potential model with Arcgis 9.3 software. The simulation results reveal the direction of hydrocarbon secondary migration and the distribution of hydrocarbon migration-accumulation units (HMAUS), and also suggest that the hydrocarbon migration direction is obviously controlled by nose-like structure belts where most of hydrocarbons accumulate. That shows high reliability because they are consistent with the hydrocarbon exploration result in this area. On the basis of integrated analyses of source rocks and hydrocarbon migration direction, the following five areas in the gentle slope are identified to be the preferred hydrocarbon accumulation area: Taijiazhuang area, northern and southern Xicaogu area, as well as northern and southern Leijiazhuang area. It is considerably helpful to reduce the risk in hydrocarbon exploration of Shulu Sag.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼