RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Prediction of the compressive and tensile strength of HPC concrete with fly ash and micro-silica using hybrid algorithms

        Yin, Hang,Liu, Shuxian,Lu, Shasha,Nie, Wei,Jia, Baoxin 테크노프레스 2021 Advances in concrete construction Vol.12 No.4

        Evaluating the impact of fly ash (FA) and micro-silica (MS) on the tensile (TS) and compressive strength (CS) of concrete in different ages provokes to find the effective parameters in predicting the CS and TS, which not only could be usable in the practical works but also is extensible in the future analysis. In this study, in order to evaluate the effective parameters in predicting the CS and TS of concrete containing admixtures and to present a fitted equation, the multivariate adaptive regression splines (MARS) method has been used, which could find a relationship between independent and dependent variables. Next, for optimizing the output equation, hybrid genetic algorithm (GA), particle swarm optimization (PSO), and grey wolf optimization (GWO) methods have been utilized to find the optimal conclusions. It could be concluded that for both predictions of CS and TS, all models have the coefficient of determination (R<sup>2</sup>) larger than 0.949 and 0.9138, respectively. Furthermore, between three hybrid algorithms, MARS-PSO could be proposed as the best model to obtain the most accuracy in the prediction of CS and TS. The usage of hybrid MARS-PSO techniques causes a noticeable improvement in the prediction procedure.

      • KCI등재후보

        Inhalation of panaxadiol alleviates lung infl ammation via inhibiting TNFA/ TNFAR and IL7/IL7R signaling between macrophages and epithelial cells

        Yifan Wang,Hao Wei,Zhen Song,Liqun Jiang,Mi Zhang,Xiao Lu,Wei Li,Yuqing Zhao,Lei Wu,Shuxian Li,Huijuan Shen,Qiang Shu,Yicheng Xie 고려인삼학회 2024 Journal of Ginseng Research Vol.48 No.1

        Background: Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng andits derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic propertieshinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalationadministration may solve these issues, and the specific mechanism of action needs to be studied. Methods: A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophageinflammation model, and a coculture model of epithelial cells and macrophages were used to study the effectsand mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy andmechanism were verified in a human BALF cell model. Results: Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, includinginflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose ofinhalation was much lower than that of intragastric administration under the same therapeutic effect, which maybe related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysisand verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibitingTNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosisand promote proliferation. Conclusion: PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7Rsignaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lunginflammation.

      • KCI등재

        Role of Functionalized Acceptors in Heteroleptic Bipyridyl Cu(I) Complexes for Dye-Sensitized Solar Cells

        Xiaoqing Lu,Yang Shao,Ke Li,Zigang Zhao,Shuxian Wei,Wenyue Guo 대한금속·재료학회 2016 ELECTRONIC MATERIALS LETTERS Vol.12 No.5

        The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I)complexes bearing functionalized acceptor subunits have beeninvestigated by density functional theory and time-dependent DFT. TheCu(I) complexes exhibit distorted trigonal-pyramidal geometries andtypical metal-to-ligand electron transfer characteristics at the longwavelength region. Replacing carboxylic acid with cyanoacrylic acid inacceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMOenergy gaps and facilitating favorable donor-to-acceptorintramolecular electron transfer and charge separation. Introduction ofheteroaromatic groups and cyanoacrylic acid significantly improves thelight-harvesting capability of the complexes. Our results highlight theeffect of functionalized acceptors on the optoelectronic properties ofbipyridyl Cu(I) complexes and provide a fresh perspective on screeningof efficient sensitizers for dye-sensitized solar cells.

      • KCI등재

        In Situ Growth of MOF-Derived NaCoPO4@Carbon for Asymmetric Supercapacitive and Water Oxidation Electrocatalytic Performance

        Peng Guo,Zhaojie Wang,Hongyu Chen,Shaohui Ge,Chen Chen,Haowei Wang,Jinbao Zhang,Minglei Hua,Shuxian Wei,Xiaoqing Lu 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.15 No.01

        The increasing energy crisis promotes the study on novel electrode materials with high performance for supercapacitive storage and energy conversion. Transition metal phosphates have been reported as a potential candidate due to the unique coordination and corresponding electronic structure. Herein, we adopted a facile method for preparing NaCoPO4@C derived from a metal organic framework (MOF) as a bifunctional electrode. ZIF-67 was synthesized before a refluxing process with Na2HPO4 to form a precursor, which is transformed into the final product via calcination in different atmospheres. Specifically, the resultant NaCoPO4@C exhibits a high specific capacitance of 1178.7 F g -1 at a current density of 1 A g -1 for a supercapacitor. An asymmetric supercapacitor (ASC) assembled with active carbon displays a high capacitance of 163.7 F g -1 at 1 A g -1. In addition, as an oxygen evolution reaction (OER) catalyst, the NaCoPO4@C electrode requires only 299 mV to drive a current density of 10 mA cm -2. These results suggest that the rational design of MOF-derived NaCoPO4@C provides a variety of practical applications in electrochemical energy conversion and storage.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼