RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Applications of artificial neural network and Box-Behnken Design for modelling malachite green dye degradation from textile effluents using TiO₂ photocatalyst

        Chandrika. K.C,Niranjana Prabhu,R. R. Siva Kiran,R. Hari Krishna 대한환경공학회 2022 Environmental Engineering Research Vol.27 No.1

        Most of the photocatalytic studies for pollutant degradation are based on optimizing a single parameter that results in a non-linear relationship between the overall parameters and the photo-degradation reactions. To address this critical problem, herein, we report the use of Response Surface Methodology based on the Box-Behnken Design (BBD) for modeling the photocatalysis degradation of Malachite Green (MG) dye using nano TiO₂ as photocatalyst. The catalyst characterizations are carried out using XRD, SEM, and TEM, indicating that the TiO₂ prepared by sol-gel synthesis possesses Anatase phase with particles in the nano regime and porous surface morphology. The optimum operating conditions for degradation of MG was identified by the interactive effects of variable factors such as initial dye concentration 10-30 ppm (x₁), catalyst dosage 1-3 mg (x₂), contact time 20-60 min (x₃) using the Box-Behnken method. Furthermore, the degradation reactions are also evaluated by Artificial Neural Networks (ANN). Their predicted results have been validated by the experimental studies and found to be acceptable. Their optimal results to achieve 90% degradation efficiency at TiO₂ nanoparticle dosage (3 mg), reaction time (60 min), and initial dye concentration (20 ppm) have been validated by the experimental studies and found to be acceptable.

      • KCI등재

        Quantitative Assessment of Hand Dysfunction in Patients with Early Parkinson’s Disease and Focal Hand Dystonia

        Deepa Kandaswamy,MuthuKumar M,Mathew Alexander,Krishna Prabhu,Mahasampath Gowri S,Srinivasa Babu Krothapalli 대한파킨슨병및이상운동질환학회 2018 Journal Of Movement Disorders Vol.11 No.1

        Objective Motor impairments related to hand function are common symptoms in patients with movement disorders, such as Parkinson’s disease (PD) and focal hand dystonia (FHD). However, hand dysfunction has not been quantitatively assessed as a clinical tool for screening patient groups from healthy controls (HCs). The aim of our study was 1) to quantitatively assess hand dysfunction in patients with PD and FHD and its usefulness as a screening tool 2) to grade disease severity in PD and FHD based on hand dysfunction. Methods The current case-control study included HCs (n = 50) and patients with known history of PD (n = 25) or FHD (n = 16). Hand function was assessed by a precision grip task while participants lifted objects of 1.3 N and 1.7 N under dry skin conditions, followed by very wet skin conditions (VWSCs). Receiver operating characteristic and summative scoring analyses were performed. Results In PD, the combination of loading phase duration and lifting phase duration at quantitative cutoffs of 0.36 and 0.74 seconds identified 21/25 patients as diseased and 49/50 subjects as HCs with 1.7 N under VWSCs. In PD, 5/21 was graded as “mild” and 16/21 as “moderate cases.” In FHD, slip force at a cutoff of 1.2 N identified 13/16 patients as diseased and 41/50 subjects as HC with 1.7 N under VWSCs, but disease severity could not be graded. Conclusion Our results demonstrate the use of precision grip task as an important clinical tool in assessment of hand dysfunction in movement disorder patients. Use of quantitative cutoffs may improve diagnostic accuracy and serve as a valuable adjunct to existing clinical assessment methods.

      • KCI등재

        Antihyperlipidemic Effect of Active Principle Isolated from Seed of Eugenia jambolana on Alloxan-Induced Diabetic Rabbits

        Suman B. Sharma,Reenu S. Tanwar,Afreena Nasir,Krishna M. Prabhu 한국식품영양과학회 2011 Journal of medicinal food Vol.14 No.4

        Diabetes is accompanied by lipid abnormalities, which contribute significantly to cardiovascular morbidity and mortality in diabetic patients. We previously demonstrated the potent antihyperglycemic activity of the active principle (fraction II from Sephadex LH 20 chromatography [LH II]) isolated from ethanolic seed extract of Eugenia jambolana in diabetic rabbits. In the present study, the efficacy of LH II was evaluated for its hypolipidemic activity in alloxan-induced mildly diabetic (MD) and severely diabetic (SD) rabbits. Phytochemical investigation of LH II by various structural spectra showed the presence of saturated fatty acid, Δ5 lipid, and sterol. Oral administration of LH II (10 mg/kg of body weight) for 21 days resulted in improved glycemic control in both MD and SD rabbits. After treatment with LH II, serum total cholesterol, triglycerides, high-density lipoprotein cholesterol, and the total cholesterol/high-density lipoprotein cholesterol ratio were significantly improved. LH II also resulted in significant (P < .001) improvement in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and levels of total lipids and glycogen in both MD and SD rabbits. Thus, the present study demonstrates that LH II possesses potent hypolipidemic activity and efficacy in both MD and SD rabbits.

      • KCI등재

        Elucidation of Mechanism of Action of Cassia auriculata Leaf Extract for Its Antidiabetic Activity in Streptozotocin-Induced Diabetic Rats

        Shipra Gupta,Suman B. Sharma,Usha R. Singh,Surendra K. Bansal,Krishna M. Prabhu 한국식품영양과학회 2010 Journal of medicinal food Vol.13 No.3

        Cassia auriculata traditionally has been used to treat diabetes from ancient times. The objective of the present study was to investigate the mechanism of action for the antidiabetic activity of aqueous leaf extract of C. auriculata (CLEt) in streptozotocin-induced mildly diabetic (MD) and severely diabetic (SD) rats. CLEt was orally administered to MD and SD rats at a dose of 400mg/kg once a day for 15 days. CLEt-treated MD and SD rats showed significant reduction in fasting blood glucose. Assessment of plasma insulin and C-peptide following treatment with CLEt revealed significant elevation in their levels. Administration of CLEt enhanced the activity of hepatic hexokinase and phosphofructokinase and suppressed glucose-6-phosphatase and fructose-1,6-bisphosphatase in both MD and SD rats. A significant rise in glycogen content was also observed in both liver and muscles of CLEt-fed MD and SD rats. Histopathological examination of pancreatic sections revealed increased number of islets and β-cells in CLEt-treated MD as well as SD rats. The findings of the study suggest that the antidiabetic effect of CLEt could be due to its insulinogenic action. In addition, impaired glucose homeostasis was improved by feeding the extract through amelioration in the carbohydrate metabolic pathways. Thus, the extract may exert an antidiabetic effect through pancreatic as well as extrapancreatic action.

      • KCI등재

        Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications

        Maheshwaran G.,Seethalakshmi G.,Kousalya Devi V.,VenkataKrishna Lappasi Mohanram,Ramesh Prabhu M.,Krishna Kumar M.,Sudhahar S. 한국물리학회 2022 Current Applied Physics Vol.36 No.-

        The fabrication of high performance supercapacitor electrodes has been greatly investigated for future high power storage applications. In this present work, chromium oxide-cobalt oxide based nanocomposite (Cr2O3–Co3O4 NC) was synthesized using the hydrothermal approach. Moreover, the cyclic voltammetry (CV) study reveals the Cr2O3–Co3O4 NC delivers a high specific capacitance of 619.4 F/g at 10 mV/s. The electrochemical impedance spectra (EIS) of Cr2O3–Co3O4 NC possess the solution resistance (Rs) and charge transfer resistance (Rct) of 0.68 Ω and 0.03 Ω respectively. The Galvanostatic charge-discharge (GCD) analysis demonstrated the prolonged charge-discharge time and good rate capability of the Cr2O3–Co3O4 NC. The cyclic stability of Cr2O3–Co3O4 NC delivers superior capacitive retention of 83% even after 2000 cycles. The asymmetric supercapacitor (ASC) device based on Cr2O3–Co3O4//AC yielded an energy density of 4.3 Wh/kg at the corresponding power density of 200 W/kg. Furthermore, the ASC delivers superior cyclic stability of 74.8% even after 1000 consecutive charge-discharge cycles.

      • Development of a Unique Mouse Intervertebral Disc Degeneration Model Using a Simple Novel Tool

        Baldia Manish,Mani Sunithi,Walter Noel,Kumar Sanjay,Srivastava Alok,Prabhu Krishna 대한척추외과학회 2021 Asian Spine Journal Vol.15 No.4

        Study Design: Animal case control study.Purpose: To create a simple, reproducible disc degeneration model for mouse coccygeal vertebrae. Overview of Literature: Back pain due to disc degeneration is probably the most common problem encountered in neurosurgical practice. An easily reproducible animal model for disc degeneration will help in understanding its pathophysiology, and serve as a platform for examining various therapeutic options.Methods: A total of 18 mice were divided into injured (n=12) and non-injured (n=6) groups. The disc height index (DHI%) at coccygeal 4–5 level was measured by computed tomography (CT) scan for all mice. Coccygeal 4–5 discs of the injury group were injured using a 32G needle fixed to a novel tool and confirmed by CT. The non-injury group underwent no procedure. DHI% was measured by CT at 2-, 4-, and 6-week post-injury, and all mice tails were sectioned for histopathology grading of disc degeneration at the respective time intervals.Results: The injured group showed significant variation in DHI% at 2, 4, and 6 weeks, whereas there was no change in the noninjured group. Histopathologic evaluation with Safranin O stain showed a worsening of the disc degeneration score at 2, 4, and 6 weeks in the injured group, but in the non-injured group there was no change. Percutaneous needle injury technique with our novel tool provided 100% accuracy and uniform degeneration.Conclusions: A simple, easily reproducible mouse model for disc degeneration was created using a simple, cost-effective, novel tool and technique, its advantage being high precision and user friendly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼