RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 학위유형
        • 주제분류
        • 수여기관
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 지도교수
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 2차원 MoS2 채널 기반의 강유전 시냅스 트랜지스터 제작 및 특성 연구

        최서울 동국대학교 일반대학원 2022 국내석사

        RANK : 248703

        최근 4차 산업의 발전으로 핵심 기술인 인공지능에 대한 이목이 집중되고 있다.컴퓨팅 시스템의 성능을 향상시키기 위해 전자 공학 분야에서는 반도체 소자의 집적도 향상에 대한 연구를 진행해 왔다. 하지만 무어의 법칙에 의거하여 거의 한계에 다다른 소자의 집적도 향상과 함께 시스템의 성능 발전도 정체기에 다다르게 되었다.앞서 언급된 기술적 제한을 극복하기 위해 새로운 컴퓨팅 시스템인 뉴로모픽 컴퓨팅이 고안되었다. 연구에서는 이차원 전이 금속칼코겐 물질 중 몰리브덴과 황으로 구성된 이황화 몰리브덴(MoS2)을 채널(Channel)로 사용하고 강유전체인 Pb(Zr,Ti)O3를 게이트 산화막으로 활용하여 강유전 전계효과 트랜지스터(Ferroelectric Field-Effect Transistor, FeFET)를 제작하였다.

      • 계면 대류와 마랑고니 효과에 의해 유도된 이차원 자기조립 MoS2 박막의 제조 및 특성 분석

        임주현 숭실대학교 대학원 2020 국내석사

        RANK : 248703

        이차원 소재를 다양한 어플리케이션에 도입하기 위해서 균일한 이차원 전이금속 칼코겐 화합물(Transition metal dichalcogenides ; TMD)의 박막 형성은 매우 중요하다. 본 연구는 TMD를 소자의 채널물질로 활용하기 위해 우수한 반도체성을 지닌 이차원 이황화 몰리브덴(MoS2) 박막을 계면에서 자기조립을 유도해 제조하였다. MoS2를 희석시킨 수성혼합물 표면에 ethyl acetate (EA)를 첨가함으로써 몇 분 이내에 공기-물 계면에서 이차원 MoS2 박막이 자기 조립됨을 보였다. Raman spectroscopy분석을 통해 형성된 박막이 3~4층 이하의 두께를 이루고 있음을 확인하였으며 FE-SEM 분석을 통해 안정적으로 조립된 MoS2 박막의 표면 morphology를 확인 하였다. EDS 및 XPS 원소 분석을 통해 자기 조립 박막의 원소조성비를 확인함으로써 신뢰할만한 화학양론비를 보여줌과 동시에 조립된 MoS2 박막이 물리적인 손상 없이 안정적으로 형성되었음을 입증하였으며, 특히 Mo 3d 및 S 2p의 XPS 스펙트럼 분석을 통해 자기 조립된 박막이 매우 높은 상 순도를 지닌 2H-MoS2 박막임을 증명하였다. 또한 본 연구에서는 자기 조립된 MoS2 박막을 평평한 기판뿐 아니라 임의의 비 평면 및 곡면기판에 성공적으로 전사될 수 있음을 보여줌으로써 차세대 이차원소재 기반의 MoS2 박막 트랜지스터 및 유연소자로의 적용가능성을 보여주었다. In order to introduce two-dimensional materials into various applications, it is very important to form uniform 2D transition metal dichalcogenides (TMD) thin films. In this study, a two-dimensional molybdenum disulfide (MoS2) thin film with excellent semiconducting properties was fabricated by inducing self-assembly at the interface in order to utilize TMD as a channel material of devices. The addition of ethyl acetate (EA) to the surface of the aqueous mixture diluted with MoS2 showed that the 2D MoS2 thin film self-assembled at the air-water interface within a few minutes. It was confirmed that the thickness of the formed thin film was less than 3 to 4 layers through Raman spectroscopy analysis, and the surface morphology of the stably assembled MoS2 thin film was confirmed through FE-SEM analysis. By confirming the elemental composition ratio of the self-assembled thin film through EDS and XPS element analysis, it showed a reliable stoichiometric ratio and at the same time proved that the assembled MoS2 thin film was stably formed without physical damage. In particular, it was demonstrated that the self-assembled thin film is a high-phase purity 2H-MoS2 thin film through XPS spectrum analysis of Mo 3d and S 2p. In addition, this study showed that the self-assembled MoS2 thin film can be successfully transferred not only to flat substrates, but also to arbitrary non-planar and curved substrates, thereby demonstrating the possibility of expansion into next-generation 2D-based MoS2 thin film transistors and flexible devices.

      • Photosensitive Multi-Layered MoS2 Inverters for Optical Sensor Systems with High Noise Immunity

        류재현 인천대학교 일반대학원 2018 국내석사

        RANK : 248703

        그라핀, 육각형 질화 붕소 (h-BN), 전이 금속 탄화물 및 질화물 (MXenes), 규소 화합물 및 포스피린 (phospherenes)과 같은 다양한 2 차원 재료 중에서, 전이 금속 디칼코게나이드 (TMDC)는 그 이상으로 인해 다양한 전자 응용에 많은 관심을 끌어왔다. 이는 2 차원 구조, 새로운 전기적, 광학적 및 화학적 특성을 포함한다. 특히 WSe2, WS2, MoSe2, MoTe2 등과 같은 대표적인 TMDC와 비교하여 MoS2 FET에 대한 연구 활동은 풍부하고 무독성 이며 박리를 혹은 화학 기상증착 (CVD)으로 쉽게 제작 가능하다. 또한 적외선에서부터 자외선에 이르는 감지 파장을 갖는 광 센서에 대한 연구 활동은 상당히 흥미로웠다. MoS2의 층수를 변화로 파장에 따른 빛의 흡수가 선택적으로 조절 될 수 있기 때문에 광 검출기의 적용 가능성을 모색하고 있다. 또한, 2 차원 재료 자체의 특유의 특성과 관련된 투명성 및 기계적 유연성은 a-Si, poly-Si, III-V 반도체와 같은 기존의 다른 채널 재료와 비교할 때 다른 장점이다. 이러한 의미에서, 우리는 개념적으로 주파수 응답과 관련된 높은 신호 대 잡음 시스템을 가진 광 센서 시스템의 적용을 위해 감광 다층 공핍 부하 장치를 사용할 것을 제안했다. 광 감응 링 발진기 단위 블록을 만들기 위해 다중 어닐링 및 소수성 폴리머 캡슐화를 통해 다층 MoS2 FET의 전기적 특성을 최적화했습니다. 또한, 우리는 광 감응 형 인버터의 요구 사항을 충족시키기 위해 안정적인 단위 장치를 얻기 위해 다층 MoS2 드라이버에 차광막 층 형성 방식을 채택 할 것을 제안했습니다. 광 차폐 기술과 함께 새로운 공정 최적화를 통해 원자 층 얇은 층과 상당한 전기 밴드 갭의 독특한 장점과 관련된 고감도의 광 검출기의 응용을 위해 차광 (LS) 층을 갖는 다층 MoS2 인버터가 먼저 구현되었다. 조명 조명의 파장 변화에 따라, 인버터의 광 누설 거동은 로드 라인 분석을 통해 분석적으로 검증 된 제어 방식으로 실험적으로 시연되었습니다. 광 센서 적용을 위한 공핍 부하를 갖는 인버터의 작동에서(NML) 및 전이 폭은 청색 발광 다이오드 (LED)의 경우 약 20 및 220 %로 각각 인핸스먼트 방식 인버터에 비해 현저하게 향상되었다. 이와 함께 상용화 된 a-Si:H TFT에 비해 MoS2 기반 포토 센셜 인버터의 성능 지수 검증을 위한 광 감도, 검출도 및 칩 면적 밀도에 대한 폭 넓은 비교 연구를 수행했습니다. 전반적으로, MoS2 기반의 감광성 인버터는 이득 및 노이즈 마진과 관련하여 a-Si TFT와 유사하거나 더 우수한 값을 갖는 것으로 판명되었다. 그러나 MoS2는 a-Si:H TFT와 비교할 때 영역 당 소자 통합 수준에서 매우 강한 장점을 가지고 있으며 어두운 곳에서 파랑에 이르기까지 파장의 변화에 민감한 변조 특성을 가지고 있다. 이것은 MoS2 대 a-Si:H TFT의 상대적 특정 검출 (DMoS2 * / Da-Si:H * ~ 15000)에서 측정 된 I-V 특성에서 추출한 것과 같은 네 차수의 크기 차이 때문일 수 있습니다. 결론적으로, MoS2 FET의 프로세스 최적화 측면에서 차폐 채택, 인버터 성능 지수에 대한 비교 연구 결과에서 모든 일련의 결과는 포토 센시티브 변조의 특성이 LS 계층을 채택한 다 계층 MoS2 인버터를 사용하여 클럭생성기로서의 잠재적 인 용도를 제공합니다. Among various two dimensional materials such as graphene, hexagonal boron nitrides (h-BN), transition metal carbides and nitrides (MXenes), silicenes, and phospherenes, transition metal dichalchogenides (TMDCs) have attracted much attention toward various electronic applications due to its ideal two dimensional structure, novel electrical, optical, and chemical properties. In particular, compared with representative TMDCs such as WSe2, WS2, MoSe2, and MoTe2, etc., research activities for MoS2 FETs have been predominantly explored and reported up to now due to their abundance, nontoxicity, easy preparation of MoS2 films through exfoliation or/and chemical vapor deposition (CVD). Moreover, research activities for optical sensors with detection wavelength, ranging from near infra-red to ultra-violet, have been significantly intrigued, thereby exploring the opportunities for the application of light detectors because the absorption of light depending on wavelength can be selectively tailored by changing the number of layers of MoS2. In addition, transparency and mechanical flexibility associated with peculiar characteristics of two-dimensional materials themselves are another merits compared with other conventional channel materials such as a-Si, poly-Si, III-V semiconductors. In this sense, photo-sensitive multi-layered depletion load devices were used for the application of optical sensor systems with high signal to noise systems, conceptually associated with frequency response. In order to achieve unit-block of photo-sensitive ring oscillators, electrical properties of multi-layered MoS2 FETs were optimized via multiple annealing and hydrophobic polymer encapsulation. Furthermore, light shield layer scheme were adopted for the multi-layered MoS2 drivers to achieve stable unit devices for fulfilling the requirements of photo-sensitive inverters. Through novel process optimization together with light shielding scheme, multi-layered MoS2 inverters with light shielding (LS) layers were firstly implemented for the application of highly sensitive photo detectors associated with their peculiar advantages of an atomically thin layer and a sizable electrical band gap. With the change of wavelength in light illumination, the photo-leakage behaviors for the inverters were experimentally demonstrated as a controlled manner, analytically validated by load-line analysis. In operation of inverters with a depletion load for the application of photo detectors, the low noise margin (NML) and transition width in the light of blue light emitting diodes (LEDs) were significantly enhanced by approximately 20 and 220%, compared with those of the inverters in dark, respectively. In parallel, extensive comparison study on photo-responsivity, detectivity, and chip area density have been conducted for validation of figure of merits of MoS2 based photo-sensitive inverters compared with commercialized a-Si:H TFTs. Overall, the photosensitive inverters based on MoS2 proved to have similar or superior values to the a-Si TFTs in terms of gain and noise margin. However, the MoS2 has very strong advantages in the level of device integration per area, and sensitive modulation properties in variation of wavelength from dark to blue, as compared with a-Si TFTs. This can clearly be attributed to the four orders of magnitude difference in the relative specific detection (DMoS2*/Da-Si*~15000) of MoS2 versus a-Si TFTs, as extracted from the measured I-V characteristics. In conclusion, all the series of results, in terms of process optimization of MoS2 FETs, light shielding adoption, a comparative study on inverter performance index, clearly substantiate the fact that the characteristics of photo sensitive modulation are highly expected to be utilized as one of potential usages as clock generators by using multi-layered MoS2 inverters with adoption of LS layers.

      • MoS2에 PVP와 PMF를 이용한 N-doping 현상

        이성호 성균관대학교 일반대학원 2016 국내석사

        RANK : 248703

        본 논문에서는 MoS2(Molybdenum Disulfide)를 반도체 소자로 응용하기 위해 꼭 필요한 도핑 공정의 새로운 방법을 제시하고 있다. 현재 반도체 산업에서 이용 되고 있는 implant 공정을 통한 방법이 아닌 Si 기판 위에 PVP와 PMF를 PEGMA와 혼합한 후 MoS2위에 코팅 진행 및 열처리를 진행하여 MoS2가 n-type으로 doping 되는 것을 보여준다. 도핑 원리는 PMF의 triazine functional group들의 질소 원자들이 전자 도너로 작용을 하기 때문에 이 막질이 MoS2와 접촉할 때, 음(-) 전하인 전자들이 triazine functional group에서 MoS2로 이동하여 n-type으로 도핑시키는 원리이다. 추가로 PMF의 농도가 높아질 수록 도핑 농도가 높아져 control 가능하다는 것을 알게 되었다. MoS2의 도핑효과는 Raman spectroscopy와 electrical measurements방법을 통해 증명하였고, MoS2를 channel로 이용한 transistor 제작을 통해 반도체 소자로의 응용 가능성을 확인했다. Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (~200 cm2/V-sec that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using MoS2, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of MoS2 electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we first demonstrate a controllable n-doping method for TMD on a poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of TMD by controlling concentration of PMF in the PVP/PMF layer. In addition, the proposed doping method is investigated in detail through Raman spectroscopy, electrical measurements (ID-VG), and optical measurements.

      • 산소 플라즈마 기반 황 공공 제어를 통한 MoS2 멤트랜지스터의 저항 변화 스위칭 특성 연구

        권오준 충북대학교 2023 국내석사

        RANK : 248703

        Two-dimensional (2D) transition metal dichalcogenide materials provide significant advantages in achieving integration capability, extremely high scalability, and diverse electrical property. Recently, the gate-tunable memristive devices have been demonstrated using chemical vapor deposition grown polycrystalline MoS2 thin film, providing heterosynaptic plasticity and wide conductance tunability. However, the considerable difficulty in controlling the concentration of the pre-existing sulfur defects disturbs reliable resistive switching characteristics in the memtransistor. Herein, we demonstrate tunable S vacancy-modulated MoS2 memtransistor using O2 plasma treatment method. The atomic concentrations of Mo and S in the MoS2 film depending on the O2 plasma treatment time were measured by X-ray photoelectron spectroscopy analysis. The corresponding work function and energy band structure were confirmed by ultraviolet photoelectron spectroscopy and UV-visible spectroscopy analysis. Vibrational modes of the MoS2 film as O2 plasma treatment time were also investigated by Raman spectrometer. Depending on the O2 plasma treatment location and time, the resistive switching behavior was effectively controlled in the memtransistor devices. The memtransistor realizes multilevel conductance owing to the tunable resistive switching behavior under varying gate voltages. Furthermore, the memtransistor exhibits long-term potentiation/depression behavior by the drain and gate pulse stimulus. The promising results demonstrated by O2 plasma treated MoS2 memtransistor show the potential for realizing energy efficient neuromorphic synaptic devices.

      • Direct Transfer and Low Temperature Synthesis of MoS2 Thin Film for Flexible Electronics

        이진환 성균관대학교 일반대학원 2017 국내박사

        RANK : 248703

        The two-dimensional semiconductor of molybdenum disulfide (MoS2), one of transition metal dichalcogenides, has recently attracted a huge interest due to remarkable properties such as high carrier mobility. An ultra-clean and large MoS2 thin film on a flexible substrate is highly desirable for next generation electronic device applications. In this dissertation, the direct transfer method for MoS2 thin film synthesized with large area and high quality onto flexible substrate has been investigated. The high crystalline and large scale MoS2 thin film were synthesized on various rigid substrate using thermal CVD method. The synthesized films could be transferred onto PET substrate using epoxy glue. The surface of transferred films was ultra-clean and smooth without defects or wrinkles, which could be characterized by Raman spectroscopy and AFM before and after transfer. The ion-gel gated field-effect transistor based on the as-grown and transferred MoS2 thin film were fabricated to demonstrate preserving with high performance with carrier mobility of 34 cm2/Vs and on/off current ratio of ~105 after transfer process. The production methods of MoS2 thin film by various energy source have been also developed to be able to synthesize on flexible substrate directly. First, the MoS2 thin film was successfully synthesized using a plasma enhanced CVD at a relatively low temperature below 300 ℃. The molybdenum metal deposited on a 4 inch wafer-scale PI substrate was wholly sulfurized to the MoS2 thin film by dissociated H2S plasma. The Hall measurement with van der Pauw method was conducted to determine its electrical performance which has average carrier mobility of 3.7 cm2/Vs. The optical and structural analysis, also, were carried out to characterize the film. Finally, the laser injection induced the direct production of MoS2 from a precursor including ionic MoS4 on PET substrate. The laser could draw a line or pattern with synthesis process, which is controllable by changing the scan speed or power. The advantage of this method is flexibility of precursor engineering to apply various substrate, coating methods, or other TMDs materials synthesis such as WS2.

      • Synthesis of large monolayer MoS2 film and its application to field-effect transistors

        김태영 서울대학교 대학원 2017 국내박사

        RANK : 248703

        Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable bandgap energy. Among TMDC materials, molybdenum disulfide (MoS2) has gained significant attention due to its direct bandgap of 1.8 eV as a single layer. Herein, numerous studies have explored the application of MoS2 in nanoelectronic devices. To make full use of its unique optical and electrical merits in practical applications, however, synthesis of large and uniform monolayer MoS2 is highly necessary. In this regard, a chemical vapor deposition (CVD) technique has been intensively used to produce large and uniform monolayer MoS2. Meanwhile, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, novel strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Here, in this dissertation, the study on the atomically thin MoS2 synthesis and its application to FETs will be discussed. First, the effect of irradiation on MoS2 FETs with 10 MeV high energy proton beams will be discussed. The electrical characteristics of the devices were measured before and after proton irradiation with different fluence conditions. The electrical changes were explained by the proton-irradiation-induced traps, including positive oxide-charge traps in the SiO2 layer and trap states at the interface between the MoS2 channel and the SiO2 layer. Second, the CVD synthesis of large and monolayer MoS2 film will be discussed. The predominantly monolayer character of the CVD-grown MoS2 film was verified by atomic force microscopy (AFM), Raman, and photoluminescence (PL) spectroscopy measurements. Third, the electrical properties of synthesized large-area monolayer MoS2 field-effect transistors with low-cost inkjet-printed Ag electrodes will be discussed. The monolayer MoS2 film was grown by CVD method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo or electron beam lithography. Last, the fully printed transparent CVD-synthesized monolayer MoS2 phototransistor arrays on flexible polymer substrates will be discussed. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS2. By integrating the soft organic components with ultra-thin MoS2, the fully printed MoS2 phototransistors exhibits excellent transparency and mechanically stable operation.

      • Effect of pressure on the morphology and methanation reactivity in hydrothermal synthesis of MoS2

        최재명 Graduate School, Korea University 2014 국내석사

        RANK : 248703

        Unsupported MoS2 catalysts were prepared by hydrothermal reaction using ammonium tetrathiomolybdate (ATTM, (NH4)2MoS4). The effects of pressure and temperature during the hydrothermal reaction on the characteristics of the MoS2 catalysts were studied using XRD, SEM, TEM, N2 adsorption-desorption, XPS, H2-TPR, and CO-desorption techniques and correlated with the kinetic results for the methanation over the MoS2 catalysts. As results of this study, it was found that the BET surface and pore volume of MoS2 increased with increasing preparation pressure. This increase also contributed to the improvement of the catalytic activity of MoS2. As the preparation pressure was increased, the degree of the stacking of slab and crystallite size of MoS2 decreased, which indicated an improvement in the catalytic activity of MoS2 for methanation. The increase of preparation pressure resulted in the increase of curvature on the basal planes of MoS2, which was considered to contribute to the increase of active sites and the improvement of the catalytic activity of MoS2. The results of BET, CO-desorption, H2-TPR, methanation reaction suggested that the catalytic activity of MoS2 was improved by increasing preparation pressure, but there existed an optimum preparation temperature at 350oC within the range of experimental variables.

      • Synthesis and Electrochemical Properties of MoS2/rGO/S Composite as a Cathode for Room Temperature Sodium-Sulfur Batteries

        부미레디 경상대학교 대학원 2020 국내석사

        RANK : 248703

        상온용 소듐-황 전지는 높은 이론 용량 및 에너지 밀도를 가지고 있으며 황의 풍부한 매장량으로 인한 저렴한 가격으로 차세대 에너지 저장 장치로서 전세계 산업 및 학계에 각광받고 있다. 그러나 낮은 사이클 특성, 쿨롱 효율, 전기전도도 및 소듐폴리설파이드의 셔틀 효과는 소듐-황 전지의 상용화를 지연시키고 있다. 본 연구에서는 수열 합성법을 통해 호스트 물질인 MoS2/rGO를 합성하고 용융 확산법을 이용하여 황을 계층적 MoS2/rGO에 함침시켜 MoS2/rGO/S 복합체를 제조 하였다. MoS2/rGO는 전자 및 이온의 이동을 가속화하여 더 빠른 전기 화학 반응을 위한 메커니즘을 제공한다. 그 결과 MoS2/rGO/S 복합체는 2 C-rate에서 1000 사이클 이후 높은 초기 가역 용량 190 mAh/g을 나타냈다. 계층적 MoS2/rGO 복합체가 전자의 이동을 가속화 할 뿐만 아니라 소듐폴리설파이드를 효과적으로 포획하여 사이클링 성능의 가역성과 쿨롱 효율을 높이며 율속 특성을 향상시켰다. The room temperature sodium-sulfur batteries have an attraction to worldwide industrial and academic researchers as a next-generation energy storage system owing to high energy density, theoretical capacity, and cheap cost of sulfur. However, the practical application is being overdue by fast capacity decay, poor conductivity, and the shuttle effect attributed to the low coulombic efficiency. In the present work, we report a hierarchical MoS2 as a catalyst in situ grown on reduced graphene oxide (rGO) for the hosting of which was sulfur prepared through the hydrothermal method. The sulfur is impregnated to the hierarchical MoS2/rGO by the melt diffusion method. MoS2/rGO accelerates the transport of electron/ion, therefore providing a faster kinetic mechanism for the electrochemical reactions. The MoS2/rGO/S composite shows a high reversible capacity of 190 mAh/g after 1000 cycles at 2 C-rate. The hierarchical MoS2/rGO composite not only captures polysulfides, but also increases the electron transport.

      • MoO3 나노구조 복합화를 통한 단일층 MoS2 에서의 광물질 상호작용 및 도핑 효과 조절

        이재백 충북대학교 2023 국내석사

        RANK : 248703

        전이금속 칼코게나이드(transition metal dichalcogenides, TMD)는 초박형 두께의 2차원 반도체로써, 단일층에서 직접천이 밴드 갭을 바탕으로 한 우수한 광 반응성 등으로 인해 반도체 소자뿐만 아니라 차세대 광전소자 물질로서 큰 주목을 받고 있다. 그러나 이러한 2차원 초박형 두께로 인해 광-물질 상호작용이 상대적으로 약하기 때문에 광 산란층 등의 복합구조 형성을 통해 이를 증대시키는 연구들이 활발히 진행되고 있다. 또한, 나노복합 구조 형성 도중 TMD 물질에 발생할 수 있는 산화 및 결함 상태 등의 변화는 물질 자체의 특성에 직접적인 영향을 미칠 수 있으므로, 실제로 이러한 영향들까지 고려한 광-물질 상호작용 변조 메커니즘에 대한 규명이 필요한 실정이다. 본 연구에서는 대표적인 TMD 물질 중 하나인 단일층 MoS2 표면에 금속 산화물 반도체인 MoO3를 나노구조 복합 형태로 증착하여 광 발광 및 도핑 특성을 변조하는 방법을 제안한다. 이를 위해 화학기상 증착법을 통해 합성된 단일층 MoS2 위에 Mo 포일(foil) 표면에서 산화(oxidation)된 MoO3를 증착하여 수십~수백 나노미터 크기의 MoO3 nano-island 복합구조를 형성 하였다. Micro photoluminescence (PL) 및 Raman 분광법을 통해 MoO3 나노구조 복합화된 영역에서 8배의 PL 강도 향상과 MoS2에 p형 도핑(p-doping) 효과가 확인되었으며, 전계효과 트랜지스터(field effect transistor)의 전달 특성 곡선(transfer characteristic curve)에서 문턱전압(threshold voltage)이 양의 방향으로 이동함을 확인하였다. 또한, MoO3 증착 과정에서 열처리에 의한 MoS2의 산화 현상을 X-ray photoelectron spectroscopy 분석으로 확인하였으며, 이러한 영향을 배제하기 위해 열처리 과정 없이 MoO3를 직접 전사(dry-transfer)한 결과에서도 PL 강도 향상 및 p형 도핑 효과가 있음을 확인하였다. 이러한 연구 결과는 나노구조 복합화를 통한 2차원 TMD 물질들의 광-물질 상호작용 향상과 도핑 특성 변조를 통한 차세대 광전소자의 응용 수단으로서 활용될 수 있을 것으로 판단된다. Transition metal dichalcogenides (TMD) are ultra-thin two-dimensional semiconductors that have garnered significant attention as semiconductor devices and next-generation photoelectric element materials. This is because of their excellent photoreactivity, which is based on transition band gaps. However, due to this 2D ultra-thin thickness, light-material interaction is relatively weak, so research is actively underway to increase it through the formation of composite structures such as light scattering layers. In addition, changes in oxidation and defect conditions that may occur in TMD materials during the formation of nanocomposite structures can directly affect the characteristics of the material itself, so it is necessary to find out the optical material interaction modulation mechanism. In this study, we propose a method to modulate photoluminescence and doping characteristics by depositing MoO3, a metal oxide semiconductor, in nanostructured form on the surface of MoS2, one of the representative TMD substances. To this end, MoO3 oxidized on the surface of Mo Foil was deposited on a single layer MoS2 synthesized by chemical vapor deposition to form a MoO3 nano-island composite structure of tens to hundreds of nanometers. Microphotoluminescence (PL) and Raman spectroscopy confirmed an 8-times PL strength improvement and a p-doping effect on MoS2 in the MoO3 nanostructured region, confirming that the threshold voltage moves in a positive direction in the transfer characteristic curve of the field effect transistor. In addition, the oxidation of MoS2 due to heat treatment during MoO3 deposition was confirmed by X-ray photoelectron spectroscopy analysis, and in order to eliminate this effect, it was confirmed that MoO3 was directly transferred without heat treatment. The results of these studies are believed to be used as a means of improving the light-material interaction of 2D TMD materials through nanostructure complexation and as an application for next-generation photoelectric devices through doping characteristic modulation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼