RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Determination of polyphenolic compounds in grape seed extracts using reverse-phase high performance liquid chromatography

        Wang, Chong-Zhi,Osinski, Joachim,Shao, Zuo-Hui,Basila, Daniel,Kim, Stephen,Yuan, Chun-Su Kyung Hee Oriental Medicine Research Center 2004 Oriental pharmacy and experimental medicine Vol.4 No.4

        Oxidative stress is associated with many kinds of chronic diseases. Antioxidants such as polyphenols are compounds that protect cells against the damaging effects of reactive oxygen species. Grape seeds are considered good resources of polyphenols, and grape seed extracts have a very strong antioxidant effect. In the present study, we established a simple gradient reverse-phase high performance liquid chromatography method to determine polyphenol content from three different grape seed resources. An ODS (2), $150\;{\times}\;3.2\;mm$ column has been employed, and six polyphenols have been determined: gallic acid, protochatechuic acid, (+)-catechin, (-)-epicatechin, procyanidin B2, and epicatechin gallate. Catechin and epicatechin were the main polyphenol compounds in all three extracts. The amount of procyanidin B2 was higher in Extract 1 (from a company of China), while Extract 2 (extracted in our lab) and Extract 3 (from a company of USA) contained higher proportions of epicatechin gallate. For the total polyphenol content, Extract 1 was much higher than that of Extract 2 and 3. The results suggest that the dietary dose of grape seed extracts from different resources should be adjusted according to polyphenol content.

      • KCI등재

        The Effects of Ginsenoside Rb1 on JNK in Oxidative Injury in Cardiomyocytes

        Chun-Su Yuan,Jing Li,Zuo-Hui Shao,Jing-Tian Xie,Chong-Zhi Wang,Srinivasan Ramachandran,Jun-Jie Yin,Han Aung,Chang-Qing Li,Gina Qin,Terry Vanden Hoek 대한약학회 2012 Archives of Pharmacal Research Vol.35 No.7

        Reactive oxygen species (ROS) can induce oxidative injury via iron interactions (i.e. Fenton chemistry and hydroxyl radical formation). Our prior work suggested that American ginseng berry extract and ginsenoside Re were highly cardioprotective against oxidant stress. To extend this study, we evaluated the protective effect of protopanaxadiol-type ginsenoside Rb1 (gRb1)on H2O2-induced oxidative injury in cardiomyocytes and explored the ROS-mediated intracellular signaling mechanism. Cultured embryonic chick cardiomyocytes (4-5 day) were used. Cell death was assessed by propidium iodide and lactate dehydrogenase release. Pretreatment with gRb1 (0.01, 0.1, or 1 μM) for 2 h and concurrent treatment with H2O2 (0.5 mM) for 2 h resulted in a dose-dependent reduction of cell death, 36.6 ± 2.9% (n = 12, p < 0.05), 30.5 ± 5.1% (n = 12, p < 0.05) and 28.6 ± 3.1% (n = 12, p < 0.01) respectively, compared to H2O2-exposed cells (48.2 ± 3.3%, n = 12). This cardioprotective effect of gRb1 was associated with attenuated intracellular ROS generation as measured by 6-carboxy-2’, 7’-dichlorodihydrofluorescein diacetate, preserved the mitochondrial membrane potential as determined using JC-1. In the ESR study, gRb1 exhibited the scavenging DPPH and hydroxyl radical activities. Furthermore, our data showed the increased JNK phosphorylation (p-JNK) in H2O2-exposed cells was suppressed by the pretreatment with gRb 1 (1 μM) (p < 0.01). Co-treatment of gRb1 with a specific inhibitor of JNK SP600125 (10 μM) further reduced the p-JNK and enhanced the cell survival after H2O2exposure. Collectively, our results suggest that gRb1 conferred cardioprotection that was mediated via attenuating ROS and suppressing ROS-induced JNK activation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼