RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        A Novel Cross-Layer Dynamic Integrated Priority-Computing Scheme for 3G+ Systems

        Wang, Weidong,Wang, Zongwen,Zhao, Xinlei,Zhang, Yinghai,Zhou, Yao The Korea Institute of Information and Commucation 2012 Journal of communications and networks Vol.14 No.1

        As Internet protocol and wireless communications have developed, the number of different types of mobile services has increased gradually. Existing priority-computing schemes cannot satisfy the dynamic requirements of supporting multiple services in future wireless communication systems, because the currently used factors, mainly user priority, are relatively simple and lack relevancy. To solve this problem and provide the desired complexity, dynamic behavior, and fairness features of 3G and beyond 3G mobile communication systems, this paper proposes a novel cross-layer dynamic integrated priority-computing scheme that computes the priority based on a variety of factors, including quality of service requirements, subscriber call types, waiting time, movement mode, and traffic load from the corresponding layers. It is observed from simulation results that the proposed dynamic integrated priority scheme provides enhanced performance.

      • KCI등재

        A Novel Cross-Layer Dynamic Integrated Priority-Computing Scheme for 3G+ Systems

        Weidong Wang,Zongwen Wang,Xinlei Zhao,Yinghai Zhang,Yao Zhou 한국통신학회 2012 Journal of communications and networks Vol.14 No.1

        As Internet protocol and wireless communications have developed, the number of different types of mobile services has increased gradually. Existing priority-computing schemes cannot satisfy the dynamic requirements of supporting multiple services in future wireless communication systems, because the currently used factors, mainly user priority, are relatively simple and lack relevancy. To solve this problem and provide the desired complexity,dynamic behavior, and fairness features of 3G and beyond 3G mobile communication systems, this paper proposes a novel crosslayer dynamic integrated priority-computing scheme that computes the priority based on a variety of factors, including quality of service requirements, subscriber call types, waiting time, movement mode, and traffic load from the corresponding layers. It is observed from simulation results that the proposed dynamic integrated priority scheme provides enhanced performance.

      • KCI등재

        A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

        Dongdong Jia,Meili Zhou,Wei Wei,Dong Wang,Zongwen Bai 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.12

        Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼