RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • KCI등재

        Cellular and Molecular Mechanisms of Intestinal Fibrosis

        Wu Xiaomin,Lin Xiaoxuan,Tan Jinyu,Liu Zishan,He Jinshen,Hu Fan,Wang Yu,Chen Minhu,Liu Fen,Mao Ren 거트앤리버 소화기연관학회협의회 2023 Gut and Liver Vol.17 No.3

        Intestinal fibrosis associated stricture is a common complication of inflammatory bowel disease usually requiring endoscopic or surgical intervention. Effective anti-fibrotic agents aiming to control or reverse intestinal fibrosis are still unavailable. Thus, clarifying the mechanism underpinning intestinal fibrosis is imperative. Fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) proteins at the injured sites. Multiple cellular types are implicated in fibrosis development. Among these cells, mesenchymal cells are major compartments that are activated and then enhance the production of ECM. Additionally, immune cells contribute to the persistent activation of mesenchymal cells and perpetuation of inflammation. Molecules are messengers of crosstalk between these cellular compartments. Although inflammation is necessary for fibrosis development, purely controlling intestinal inflammation cannot halt the development of fibrosis, suggesting that chronic inflammation is not the unique contributor to fibrogenesis. Several inflammation-independent mechanisms including gut microbiota, creeping fat, ECM interaction, and metabolic reprogramming are involved in the pathogenesis of fibrosis. In the past decades, substantial progress has been made in elucidating the cellular and molecular mechanisms of intestinal fibrosis. Here, we summarized new discoveries and advances of cellular components and major molecular mediators that are associated with intestinal fibrosis, aiming to provide a basis for exploring effective anti-fibrotic therapies in this field.

      • KCI등재

        Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

        Ji Chunxiang,Li Yingyue,Xiao Qingchen,Li Zishan,Wang Boyan,Geng Xiaowan,Lin Keqing,Zhang Qing,Jin Yuan,Zhai Yuqian,Li Xiaoyu,Chen Jin 한국미생물·생명공학회 2023 Journal of microbiology and biotechnology Vol.33 No.8

        Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼