RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Interleukin-20 targets podocytes and is upregulated in experimental murine diabetic nephropathy

        Yu-Hsiang Hsu,Hsing-Hui Li,Junne-Ming Sung,Wei-Yu Chen,Ya-Chin Hou,Yun-Han Weng,Wei-Ting Lai,Chih-Hsing Wu,Ming-Shi Chang 생화학분자생물학회 2017 Experimental and molecular medicine Vol.49 No.-

        Interleukin (IL)-20, a proinflammatory cytokine of the IL-10 family, is involved in acute and chronic renal failure. The aim of this study was to elucidate the role of IL-20 during diabetic nephropathy development. We found that IL-20 and its receptor IL-20R1 were upregulated in the kidneys of mice and rats with STZ-induced diabetes. In vitro, IL-20 induced MMP-9, MCP-1, TGF-β1 and VEGF expression in podocytes. IL-20 was upregulated by hydrogen peroxide, high-dose glucose and TGF-β1. In addition, IL-20 induced apoptosis in podocytes by activating caspase-8. In STZ-induced early diabetic nephropathy, IL-20R1-deficient mice had lower blood glucose and serum BUN levels and a smaller glomerular area than did wild-type controls. Anti-IL-20 monoclonal antibody (7E) treatment reduced blood glucose and the glomerular area and improved renal functions in mice in the early stage of STZ-induced diabetic nephropathy. ELISA showed that the serum IL-20 level was higher in patients with diabetes mellitus than in healthy controls. The findings of this study suggest that IL-20 induces cell apoptosis of podocytes and plays a role in the pathogenesis of early diabetic nephropathy.

      • KCI등재

        Mutations in AP22.65 Accelerate Flowering in Arabidopsis thaliana

        Ji Hong Xing,Feng Ru Wang,Jiao Jia,Jing Zhang,Li Li,Zhan Chen,Qiao Yun Weng,Ping Yang,Ye Zhang,Bin Zhao,He Long Si,Jin Gao Dong,Jian Min Han 한국식물학회 2013 Journal of Plant Biology Vol.56 No.1

        Identification of the gene(s) responsible for floweringtime in Arabidopsis has significant implications. We used theT-DNA insertion library of Arabidopsis thaliana to screen anearly-flowering mutant that exhibits accelerated floweringunder short-day conditions. AP22.65, a novel flowering-timegene in that species, was isolated and identified via genomewalkingand bioinformatics analysis. The flowering time ofAP22.65-complementing plants was similar to that of theCol-0 wild type (WT). Conversely, its overexpression delayedflowering. Consistent with this phenotype, expression ofAP22.65 was decreased in the ap22.65-1 mutant, recoveredin AP22.65-complementing plants, and increased in AP22.65-overexpressing plants. Compared with the WT, expressionlevels of critical genes in different flowering pathways, i.e.,SPY, FLC, GI, CO, FT, and LFY, were down-regulated inloss-of-function mutants. Expression of AP22.65 was distributedin flowers, siliques, rosette leaves, and whole seedlings. Therefore, this gene may be a negative regulator of Arabidopsisflowering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼