RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Novel Method to Differentiate Tonsil-Derived Mesenchymal Stem Cells In Vitro into Estrogen-Secreting Cells

        Kim Hee-Yeon,Lee Younghay,Yoon Hee-Soo,Kim Yu-Hee,Cho Kyong-A,Woo So-Youn,김한수,박보영,Jung Sung-Chul,Jo Inho,Park Woo-Jae,Park Joo-Won,유경하 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.2

        BACKGROUND: The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS: Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS: Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17β-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION: These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency. BACKGROUND: The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS: Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS: Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17β-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION: These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.

      • KCI등재

        Matrix Metalloproteinase 1 as a Marker of Tonsil-Derived Mesenchymal Stem Cells to Assess Bone Marrow Cell Migration

        Kim Hee-Yeon,Yoon Hee-Soo,Lee Younghay,Kim Yu-Hee,조경아,Woo So-Youn,김한수,유경하,Park Joo-Won 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.2

        BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient’s bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow–derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.

      • SCIESCOPUS

        Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate‐induced colitis in mice due to increased intestinal permeability

        Kim, Ye‐,Ryung,Volpert, Giora,Shin, Kyong‐,Oh,Kim, So‐,Yeon,Shin, Sun‐,Hye,Lee, Younghay,Sung, Sun Hee,Lee, Yong‐,Moon,Ahn, Jung‐,Hyuck,Pewzner‐,Jung, Yael,Pa John Wiley and Sons Inc. 2017 JOURNAL OF CELLULAR AND MOLECULAR MEDICINE Vol.21 No.12

        <P><B>Abstract</B></P><P>Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long‐chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very‐long acyl chain ceramides with concomitant increase of long chain bases and C16‐ceramides, were more susceptible to dextran sodium sulphate‐induced colitis, and their survival rate was markedly decreased compared with that of wild‐type littermates. Using mixed bone‐marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule‐A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. <I>In vitro</I> experiments using Caco‐2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2‐knockdown <I>via </I>CRISPR‐Cas9 technology impaired barrier function. <I>In vivo</I> myriocin administration, which normalized long‐chain bases and C16‐ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC‐dextran levels, indicating that altered SLs including deficiency of very‐long‐chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼