RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        First Principles Study of Structural and Electronic Properties of Pentagonal and Hexagonal Noble Metal Nanowires

        Zhijian Fu,Li-Jun Jia,JIHONG XIA,Hai-Bo Ruan,Ke Tang,Yong Pu,Zhao-Yi Zeng,Dian-Yong Tang,Bo Kong,Qi-Feng Chen 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.6

        The equilibrium structure and electronic properties of four ultrathin free-standing pentagonal and hexagonal noble metal nanowires, that is, copper nanowires (CuNWs), silver nanowires (AgNWs), gold nanowires (AuNWs) and platinum nanowires (PtNWs), have been studied comprehensively by adopting a first-principles simulation based on the density-functional theory. The staggered topologies are more stable than the eclipsed ones by analyzing the bonding energy. The staggered ones with a linear atom chain in the center of the pentagonal or hexagons topologies are the preferred structures for CuNWs and AgNWs, but the staggered ones without a linear atom chain in the center of the pentagon or hexagon are the preferred structures for AuNWs and PtNWs due to the increasing core–core repulsions. The calculated electronic band structures and density of states present that all the noble metal nanowires are metallic. The projected densities of states (PDOS) of dominant d-states and the charge density show that the narrower d-state moved to the Fermi energy and metallic bonding character for all the noble metal nanowires.

      • Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

        Liu, Bo,Han, Shu-Mei,Tang, Xiao-Yong,Han, Li,Li, Chang-Zhong Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.12

        Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

      • SCIESCOPUSKCI등재

        The Hepatoprotective Effects of Polysaccharides Isolated from Submerged Fermentation of Ganoderma Lucidum

        ( Xue Hong Zhang ),( Hong Bo Hu ),( Yong Lian Tang ),( Rui Shan Huang ),( Jiu Fu Luo ),( Byung Ki Hur ) 한국미생물 · 생명공학회 2002 Journal of microbiology and biotechnology Vol.12 No.3

        A neutral polysaccharide, GP, was isolated from a fermentation broth of Ganoderma lucidum. Acid hydrolysis and a paper chromatography analysis indicated that the polysacchride was composed of glucose, xylose, and mannose. The molecular weight was estimated to be 2.9×10(4). The oral administration of GP to mice showed that it can inhibit liver damage induced by GalN and CCl4.

      • KCI등재

        Contact toxicity and transcriptomic analysis of terpinen-4-ol exposure in Tribolium castaneum

        Shan-shan Gao,Yong-lei Zhang,Kun-peng Zhang,Wang Xing-yun,Qing-bo Tang,Yuan-chen Zhang 한국응용곤충학회 2022 Journal of Asia-Pacific Entomology Vol.25 No.3

        The terpene, terpinen-4-ol (T4ol), exhibits contact toxicity in Tribolium castaneum. However, the molecular mechanisms underlying this toxicity have not been elucidated. This study examined changes in the expression of four classic enzymes after exposure of T. castaneum to T4ol. Acetylcholinesterase and glutathione S-transferase activities were markedly inhibited after exposure to T4ol, while that of the detoxifying enzyme cytochrome oxidase P450 increased markedly. Carboxylesterase activity did not show significant changes. Furthermore, RNA sequencing revealed 260 differentially expressed genes (DEG) between the T4ol-treated and control samples, and qRT-PCR was used to validate the RNA-Seq data. The Gene Ontology analysis classified the DEGs into 36 functional groups, including the immune system processes, response to stimulus, and developmental processes. T4ol altered the response to stimulus and the immune system process of beetles by inducing the expression of the genes Stabilin-1, Attacin 1, and Defensin 1. Furthermore, the DEGs receptor tyrosine kinase Torso-like protein (RTKTsl), Frizzled 4 (Fz4), Protein Wnt-5b, Ecdysone-induced protein 78C (E78), Zinc finger protein GLIS1 (ZFPGLIS1) were classified as participating in beetle development, and Fz4 and Protein Wnt-5b also mapped to the Wnt signaling pathway. This indicated that pathways associated with development are inhibited after exposure to T4ol. T4ol also induced CYP9Z6/GSTs7 overexpression, and RNAi targeting these genes significantly increased larvae mortality on T4ol exposure, supporting the participation of CYP9Z6/GSTs7 in the response to T4ol in T. castaneum. The results of this study will facilitate understanding of the toxic mechanisms of T4ol and provide a basis for controlling the pests of stored products.

      • KCI등재

        Knockdown of Chloride Channel-3 Inhibits Breast Cancer Growth In Vitro and In Vivo

        Fang-Min Zhou,Yun-Ying Huang,Tian Tian,Xiao Yan Liu,Yong-Bo Tang 한국유방암학회 2018 Journal of breast cancer Vol.21 No.2

        Purpose: Chloride channel-3 (ClC-3) is a member of the chloride channel family and plays a critical role in a variety of cellular activities. The aim of the present study is to explore the molecular mechanisms underlying the antitumor effect of silencing ClC-3 in breast cancer. Methods: Human breast cancer cell lines MDAMB- 231 and MCF-7 were used in the experiments. Messenger RNA and protein expression were examined by quantitative realtime polymerase chain reaction and western blot analysis. Cell proliferation was measured by the bromodeoxyuridine method, and the cell cycle was evaluated using fluorescence-activated cell sorting. Protein interaction in cells was analyzed by co-immunoprecipitation. Tumor tissues were stained with hematoxylin- eosin and tumor burden was measured using the Metamorph software. Results: Breast cancer tissues collected from patients showed an increase in ClC-3 expression. Knockdown of ClC-3 inhibited the secretion of insulin-like growth factor (IGF)-1, cell proliferation, and G1/S transition in breast cancer cells. In the mouse xenograft model of human breast carcinoma, tumor growth was significantly slower in animals injected with ClC- 3-deficient cells compared with the growth of normal human breast cancer cells. In addition, silencing of ClC-3 attenuated the expression of proliferating cell nuclear antigen, Ki-67, cyclin D1, and cyclin E, as well as the activation of extracellular signalregulated protein kinases (ERK) 1/2, both in vitro and in vivo. Conclusion: Together, our data suggest that upregulation of ClC- 3 by IGF-1 contributes to cell proliferation and tumor growth in breast cancer, and ClC-3 deficiency suppresses cell proliferation and tumor growth via the IGF/IGF receptor/ERK pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼