RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A High-Throughput Method Based on Microculture Technology for Screening of High-Yield Strains of Tylosin-Producing Streptomyces fradiae

        Yao Zhiming,Fan Jingyan,Dai Jun,Yu Chen,Zeng Han,Li Qingzhi,Hu Wei,Yan Chaoyue,Hao Meilin,Li Haotian,Li Shuo,Liu Jie,Huang Qi,Li Lu,Zhou Rui 한국미생물·생명공학회 2023 Journal of microbiology and biotechnology Vol.33 No.6

        Tylosin is a potent veterinary macrolide antibiotic produced by the fermentation of Streptomyces fradiae; however, it is necessary to modify S. fradiae strains to improve tylosin production. In this study, we established a high-throughput, 24-well plate screening method for identifying S. fradiae strains that produce increased yields of tylosin. Additionally, we constructed mutant libraries of S. fradiae via ultraviolet (UV) irradiation and/or sodium nitrite mutagenesis. A primary screening of the libraries in 24-well plates and UV spectrophotometry identified S. fradiae mutants producing increased yields of tylosin. Mutants with tylosin yield 10% higher than the wild-type strain were inoculated into shake flasks, and the tylosin concentrations produced were determined by highperformance liquid chromatography (HPLC). Joint (UV irradiation and sodium nitrite) mutagenesis resulted in higher yields of mutants with enhanced tylosin production. Finally, 10 mutants showing higher tylosin yield were re-screened in shake flasks. The yield of tylosin A by strains UN-C183 (6767.64 ± 82.43 μg/ml) and UN-C137 (6889.72 ± 70.25 μg/ml) was significantly higher than that of the wild-type strain (6617.99 ± 22.67 μg/ml). These mutant strains will form the basis for further strain breeding in tylosin production.

      • Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries

        Liu, Zhiming,Yu, Xin-Yao,Lou, Xiong Wen (David),Paik, Ungyu Royal Society of Chemistry 2016 ENERGY AND ENVIRONMENTAL SCIENCE Vol.9 No.7

        <P>Antimony (Sb) is an attractive anode material for sodium-ion batteries (SIBs) with a high theoretical capacity of 660 mAh g(-1). However, its practical application is greatly hindered by the rapid capacity fading which is largely due to the large volume expansion during sodiation. Tuning the morphology and structure at the nano-scale or using carbonaceous materials as the buffer layer is essential to address this issue. Here, a facile carbon-coating coupled with a thermal-reduction strategy has been developed to synthesize unique Sb@C coaxial nanotubes. With different annealing time, the hollow space and the amount of Sb inside the tube can be easily tuned by the partial evaporation of Sb. The as-obtained Sb@C nanotubes exhibit excellent sodium storage properties. The remarkable electrochemical performance results from the unique coaxial nanoarchitecture. Specifically, it delivers a high specific capacity of 407 mAh g(-1) at 100 mA g(-1) after 240 cycles. Furthermore, a stable capacity of 240 mAh g(-1) can be retained at 1.0 A g(-1) even after 2000 cycles. Most importantly, high capacities of 350 mAh g(-1) and 310 mAh g(-1) can be achieved at large current densities of 10 and 20 A g(-1), respectively, which represents the best rate performance among the reported Sb-based anode materials.</P>

      • Etching-in-a-Box: A Novel Strategy to Synthesize Unique Yolk-Shelled Fe<sub>3</sub>O<sub>4</sub>@Carbon with an Ultralong Cycling Life for Lithium Storage

        Liu, Zhiming,Yu, Xin-Yao,Paik, Ungyu Wiley-VCH 2016 ADVANCED ENERGY MATERIALS Vol.6 No.6

        <P> An etching-in-a-box strategy is developed to synthesize unique Fe<SUB>3</SUB>O<SUB>4</SUB>@C yolk-shelled nanocubes. Interestingly, inner cavities are generated in Fe<SUB>3</SUB>O<SUB>4</SUB> cores during the etching process. With an optimized etching time of 2 h, an ultralong cycling life is achieved, in which even after 8000 cycles the material can still deliver a significant capacity of 475 mAh g<SUP>-1</SUP> at 10 A g<SUP>-1</SUP>. </P>

      • KCI등재

        Long non-coding RNA RP11-6O2.4 indicates poor prognosis and suppresses cell cycle progression through the p38-MAPK signaling pathway in gastric cancer

        Yang Feng,Zhiming Fu,Yajun Luo,Wang Tan,Zilin Liu,Pengcheng Ye,Fei Lu,Wanping Xiang,Linghan Tang,Lin Yao,Mengyun Song,Qingmei Huang,Yilun Liu,Jiangwei Xiao 대한독성 유전단백체 학회 2019 Molecular & cellular toxicology Vol.15 No.3

        Backgrounds: The role of long non-coding RNAs (lncRNA) in gastric cancer (GC) has been highlighted in studies conducted over the past decade. However, the potential clinical value and the mechanisms of action of RP11-6O2.4 in GC have not been thoroughly elucidated to date. The specific aim of the present study was to assess RP11-6O2.4 and to explore its role in human GC. Methods: Quantitative real-time polymerase chain reaction (qPCR) was performed to analyze the expression levels of RP11-6O2.4 in GC tissues, paired adjacent noncancerous tissues (ANTs) and GC cell lines. In addition, the correlation between RP11-6O2.4 expression and the clinical characteristics and prognosis of patients with GC was statistically analyzed. The effects of RP11- 6O2.4 on the GC cell cycle transformation through the p38-MAPK signaling pathway were explored by flow cytometry, qPCR and Western blot analysis after treatment with SB203580, a p38MAPK specific inhibitor, in vitro. Results: The expression levels of RP11-6O2.4 in GC tissues were significantly lower than the paired ANTs (P<0.05). In addition, RP11-6O2.4 expression was significantly lower in cases with older age, longer maximum tumor diameter, higher ASA grade and deeper invasive depth (P<0.05). RP11-6O2.4 expression was significantly higher in cases with well/middle differentiation than poor/no differentiation; higher in cases without lymph node metastasis than in lymph node metastasis; and higher in cases in stage Ⅰ/Ⅱ than in stage Ⅲ/Ⅳ. An in vitro assay showed that RP11-6O2.4 induced G0/ G1 phase cell cycle arrest, likely by regulating the p38- MAPK signaling pathway. Conclusion: The above mentioned data suggested that RP11-6O2.4 was a tumor-suppressor gene in GC. RP11- 6O2.4 might play an important role in the cell cycle transformation by regulating the p38-MAPK signaling pathway, thereby representing a specific biomarker and a potential molecular target for the treatment of GC.

      • KCI등재

        A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu2O Photocathode in a Tandem Cell for Overall Solar Water Splitting

        Jia Liu,Yinghua Zhang,Zhiming Bai,Zhian Huang,Yukun Gao,Yuan Yao 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.11

        An integrated tandem photoelectrochemical (PEC) cell, composed of a three-dimensional (3D) ZnO/CdS/NiFe layered double hydroxide (LDH) core/shell/hierarchical nanowire arrays (NWAs) photoanode and a p-Cu2O photocathode, was designed for unassisted overall solar water splitting in this study. The optical and photoelectrochemical characteristics of ZnO-based photoanodes and Cu2O photocathode were investigated. The results show that ZnO/CdS/NiFe LDH nanostructures offer significantly enhanced performances with a photocurrent density reaching 5.8 mA · cm -2 at 0.9 V and an onset potential as early as 0.1 V (versus RHE). The enhancement can be attributed to the existence of CdS nanoparticles (NPs) which boosts the light absorption in visible region and enhances charge separation. Moreover, the introduction of NiFe LDH nanoplates, with unique hierarchical mesoporous architecture, promotes electrochemical reactions by providing more active sites as co-catalyst. On the above basis, the ZnO/CdS/NiFe LDH–Cu2O two-electrode tandem cell system was established. At zero bias, the device shows a photocurrent density of 0.4 mA · cm -2 along with the corresponding solar-to-hydrogen (STH) conversion efficiency reaching 0.50%. Our results indicate that the tandem PEC cells consisting of metal–oxide–semiconductor photoelectrodes based on Earth-abundant and low-cost materials hold promising application potential for overall solar water splitting.

      • KCI등재

        Damage Mechanisms and Metallic Materials Development in Multiphase Flow

        Zheng, Yugui,Liu, Wei,Yao, Zhiming,Ke, Wei 한국부식방식학회 2002 Corrosion Science and Technology Vol.31 No.1

        The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Crl3Ni5Mo as compared materials were selected in order to investigate the roles ofwork-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in rnultiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCI. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for OCrl3NiSMo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Crl3NiSM0, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with OCr13NiSMo whose micro-cracks were perpendicular to the surface. Ni-TI alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion.

      • KCI등재

        Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage

        Song Zuhua,Guo Dajing,Tang Zhuoyue,Liu Huan,Li Xin,Luo Sha,Yao Xueying,Song Wenlong,Song Junjie,Zhou Zhiming 대한영상의학회 2021 Korean Journal of Radiology Vol.22 No.3

        Objective: To determine whether noncontrast computed tomography (NCCT) models based on multivariable, radiomics features, and machine learning (ML) algorithms could further improve the discrimination of early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (sICH). Materials and Methods: We retrospectively reviewed 261 patients with sICH who underwent initialNCCT within 6 hours of ictus and follow-up CT within 24 hours after initial NCCT, between April 2011 and March 2019. The clinical characteristics, imaging signs and radiomics features extracted from the initial NCCT images were used to construct models to discriminate early HE. A clinical-radiologic model was constructed using a multivariate logistic regression (LR) analysis. Radiomics models, a radiomics-radiologic model, and a combined model were constructed in the training cohort (n = 182) and independently verified in the validation cohort (n = 79). Receiver operating characteristic analysis and the area under the curve (AUC) were used to evaluate the discriminative power. Results: The AUC of the clinical-radiologic model for discriminating early HE was 0.766. The AUCs of the radiomics model for discriminating early HE built using the LR algorithm in the training and validation cohorts were 0.926 and 0.850, respectively. The AUCs of the radiomics-radiologic model in the training and validation cohorts were 0.946 and 0.867, respectively. The AUCs of the combined model in the training and validation cohorts were 0.960 and 0.867, respectively. Conclusion: NCCT models based on multivariable, radiomics features and ML algorithm could improve the discrimination of early HE. The combined model was the best recommended model to identify sICH patients at risk of early HE.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼