RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Post-translational modification of the death receptor complex as a potential therapeutic target in cancer

        Kidong Kang,So-Ra Le,Xuezhe Piao,Gang Min Hur 대한약학회 2019 Archives of Pharmacal Research Vol.42 No.1

        Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.

      • SCISCIESCOPUS

        C-27-carboxylated oleanane triterpenoids up-regulate TRAIL DISC assembly via p38 MAPK and CHOP-mediated DR5 expression in human glioblastoma cells

        Byun, Hee Sun,Zhou, Wei,Park, InWha,Kang, Kidong,Lee, So-Ra,Piao, Xuezhe,Park, Jin Bong,Kwon, Taeg Kyu,Na, MinKyun,Hur, Gang Min Elsevier 2018 Biochemical pharmacology Vol.158 No.-

        <P><B>Abstract</B></P> <P>Despite recent tremendous progress, targeting of TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapy has limited success in many clinical trials, in part due to inactivation of death inducing signaling complex (DISC)-mediated caspase-8 signaling cascade in highly malignant tumors such as glioblastoma. In this study, screening of constituents derived from <I>Astilbe rivularis</I> for TRAIL-sensitizing activity identified C-27-carboxylated oleanolic acid derivatives (C27OAs) including 3β-hydroxyolean-12-en-27-oic acid (C27OA-1), 3β,6β,7α-trihydroxyolean-12-en-27-oic acid (C27OA-2), and 3β-<I>trans</I>-<I>p</I>-coumaroyloxy-olean-12-en-27-oic acid (C27OA-3) as novel TRAIL sensitizers. Interestingly, these C27OAs did not affect apoptotic cell death induced by either ligation of other death receptor (DR) types, such as TNF and Fas or DNA damaging agents, which suggests that C27OAs effectively and selectively sensitize TRAIL-mediated caspase-8 activation. Mechanistically, C27OAs upregulate the expression of cell surface DR5 and DISC formation without affecting downstream intracellular apoptosis-related proteins. The upregulation of DR5 expression by C27OAs strictly depends on transactivation of C/EBP homology protein, which is regulated through the p38 MAPK pathway, rather than p53 and intracellular reactive oxygen species status. Taken together, our results identify the novel C27OAs as TRAIL sensitizers targeting the upstream DISC assembly of DR5, and provide a rationale for further development of C27OAs for facilitating TRAIL-based chemotherapy in glioblastoma patients.</P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼