RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Aerodynamic force characteristics and galloping analysis of iced bundled conductors

        Wenjuan Lou,M.F. Huang,Jiang Lv,Lun Yang,Dong Yan 한국풍공학회 2014 한국풍공학회지 Vol.18 No.2

        Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

      • SCIESCOPUS

        Effect of motion path of downburst on wind-induced conductor swing in transmission line

        Lou, Wenjuan,Wang, Jiawei,Chen, Yong,Lv, Zhongbin,Lu, Ming Techno-Press 2016 Wind and Structures, An International Journal (WAS Vol.23 No.3

        In recent years, the frequency and duration of supply interruption in electric power transmission system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The present study focuses on the wind-induced oscillation of conductor during the process when a downburst is passing by or across a specified transmission line. Based on a revised analytical model recently developed for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully simulated. In the simulations, the downbursts travel along various motion paths according to the certain initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on suspension insulator strings' rotation angles is conducted, and the electric clearances at different strings could be compared directly. The results show that both the variation trends of the transient responses and the corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of the specified string, which is in the most disadvantageous situation along the studied line section, is picked out. And a representative motion path is concluded for reference in the calculation of each string's oscillation for the precaution of wind-induced flashover under downburst.

      • KCI등재

        Wind-induced conductor response considering the nonproportionality of generalized aerodynamic damping

        Wenjuan Lou,Dengguo Wu,Haiwei Xu 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.7

        Aerodynamic damping is a key factor that influences the wind-induced responses of transmission conductors. The inaccurate estimation of aerodynamic damping leads to misunderstanding of conductor response to wind actions. For dynamic response analysis in the frequency domain, the generalized aerodynamic damping matrix used to solve conductor motion is diagonal. This study reanalyzed the conductor generalized aerodynamic damping matrix by considering its horizontal and vertical motions and the coupling effects of different modes. The derived generalized aerodynamic damping was a nondiagonal matrix, and we defined it as nonproportional generalized aerodynamic damping. Variations in the aerodynamic damping ratio and the nonproportionality of generalized aerodynamic damping with wind speed were investigated through numerical studies of single- and triple-span conductors. Triple-span conductors with different span lengths, hanging heights, and initial pretension forces were adopted to discuss the effects of the nonproportionality of generalized aerodynamic damping on estimating the dynamic responses of conductors. Results showed that neglecting the vertical motion of a conductor leads to an overestimation of the aerodynamic damping ratio, especially under high wind speed conditions. The nonproportionality of generalized aerodynamic damping is highest when the incoming wind speed at 10 m is 25 m/s. Ignoring such nonproportionality leads to an overestimation of the resonant responses of conductors but exerts minimal effects on total fluctuating responses mainly contributed by background components. Therefore, for a transmission conductor with a significant resonant response, the nonproportionality effect of generalized aerodynamic damping must be considered. Increasing span length and conductor height or reducing initial pretension force seems to enhance nonproportionality effects on conductor responses.

      • KCI등재

        Wind field generation for performance-based structural design of transmission lines in a mountainous area

        Wenjuan Lou,Hang Bai,Mingfeng Huang,Zhiyong Duan,Rong Bian 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.31 No.2

        The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

      • KCI등재

        Effect of motion path of downburst on wind-induced conductor swing in transmission line

        Wenjuan Lou,Jiawei Wang,Yong Chen,Zhongbin Lv,Ming Lu Xu 한국풍공학회 2016 Wind and Structures, An International Journal (WAS Vol.23 No.3

        In recent years, the frequency and duration of supply interruption in electric power transmission system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The present study focuses on the wind-induced oscillation of conductor during the process when a downburst is passing by or across a specified transmission line. Based on a revised analytical model recently developed for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully simulated. In the simulations, the downbursts travel along various motion paths according to the certain initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on suspension insulator strings` rotation angles is conducted, and the electric clearances at different strings could be compared directly. The results show that both the variation trends of the transient responses and the corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of the specified string, which is in the most disadvantageous situation along the studied line section, is picked out. And a representative motion path is concluded for reference in the calculation of each string`s oscillation for the precaution of wind-induced flashover under downburst.

      • Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

        Wenjuan Lou,Huihui Wu,Zuopeng Wen,Hongchao Liang 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.2

        The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

      • SCIESCOPUS

        Aerodynamic force characteristics and galloping analysis of iced bundled conductors

        Lou, Wenjuan,Lv, Jiang,Huang, M.F.,Yang, Lun,Yan, Dong Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.18 No.2

        Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

      • SCIESCOPUS

        The loss coefficient for fluctuating flow through a dominant opening in a building

        Xu, Haiwei,Yu, Shice,Lou, Wenjuan Techno-Press 2017 Wind and Structures, An International Journal (WAS Vol.24 No.1

        Wind-induced fluctuating internal pressures in a building with a dominant opening can be described by a second-order non-linear differential equation. However, the accuracy and efficiency of the governing equation in predicting internal pressure fluctuations depend upon two ill-defined parameters: inertial coefficient $C_I$ and loss coefficient $C_L$, since $C_I$ determines the un-damped oscillation frequency of an air slug at the opening, while $C_L$ controls the decay ratio of the fluctuating internal pressure. This study particularly focused on the value of loss coefficient and its influence factors including: opening configuration and location, internal volumes, as well as wind speed and approaching flow turbulence. A simplified formula was presented to predict loss coefficient, therefore an approximate relationship between the standard deviation of internal and external pressures can be estimated using Vickery's approach. The study shows that the loss coefficient governs the peak response of the internal pressure spectrum which, in turn, will directly influence the standard deviation of the fluctuating internal pressure. The approaching flow characteristic and opening location have a remarkable effect on the parameter $C_L$.

      • SCIESCOPUS

        The inertial coefficient for fluctuating flow through a dominant opening in a building

        Xu, Haiwei,Yu, Shice,Lou, Wenjuan Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.18 No.1

        For a building with a dominant windward wall opening, the wind-induced internal pressure response can be described by a second-order non-linear differential equation. However, there are two ill-defined parameters in the governing equation: the inertial coefficient $C_I$ and the loss coefficient $C_L$. Lack of knowledge of these two parameters restricts the practical use of the governing equation. This study was primarily focused on finding an accurate reference value for $C_I$, and the paper presents a systematic investigation of the factors influencing the inertial coefficient for a wind-tunnel model building including: opening configuration and location, wind speed and direction, approaching flow turbulence, the model material, and the installation method. A numerical model was used to simulate the volume deformation under internal pressure, and to predict the bulk modulus of an experimental model. In considering the structural flexibility, an alternative approach was proposed to ensure accurate internal volume distortions, so that similarity of internal pressure responses between model-scale and full-scale building was maintained. The research showed 0.8 to be a reasonable standard value for the inertial coefficient.

      • KCI등재

        The inertial coefficient for fluctuating flow through a dominant opening in a building

        Haiwei Xu,Shice Yu,Wenjuan Lou 한국풍공학회 2014 한국풍공학회지 Vol.18 No.1

        For a building with a dominant windward wall opening, the wind-induced internal pressureresponse can be described by a second-order non-linear differential equation. However, there are twoill-defined parameters in the governing equation: the inertial coefficient CI and the loss coefficient CL. Lack of knowledge of these two parameters restricts the practical use of the governing equation. This studywas primarily focused on finding an accurate reference value for CI, and the paper presents a systematicinvestigation of the factors influencing the inertial coefficient for a wind-tunnel model building including:opening configuration and location, wind speed and direction, approaching flow turbulence, the modelmaterial, and the installation method. A numerical model was used to simulate the volume deformationunder internal pressure, and to predict the bulk modulus of an experimental model. In considering thestructural flexibility, an alternative approach was proposed to ensure accurate internal volume distortions, sothat similarity of internal pressure responses between model-scale and full-scale building was maintained. The research showed 0.8 to be a reasonable standard value for the inertial coefficient.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼