RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Use of the STR loci D18S53, D18S59, and D18S488 in the diagnosis of Edwards’ syndrome

        Ying Zhang,Xiaozhou Li,Lijuan Sun,Yunfang Shi,Duan Ju,Yan Li,Tianfu Yue 한국유전학회 2016 Genes & Genomics Vol.38 No.7

        The aim of this study was to investigate the feasibility of using short tandem repeats (STRs) to diagnose Edwards’ syndrome (ES). Quantitative fluorescence polymerase chain reaction (QF-PCR) was performed to amplify STR loci on chromosome 18, specifically D18S53, D18S59, and D18S488. The amplified products were subjected to a fluorescence signal analysis and their application to ES diagnosis was examined. Among the 807 cases that showed normal results in the karyotype analysis, 793 showed one or two fluorescence bands with a fluorescence intensity ratio of 1:1, and 14 cases showed 3 bands, which were false-positive results. ES was diagnosed in 9 samples. The sensitivities of D18S53, D18S59, and D18S488 for the diagnosis of ES were 77.78, 44.44, and 55.56 % and the specificities were 96.16, 96.03, and 96.28 %, respectively. The combined sensitivity of the three loci for diagnosing DS was 100 % (9/9), with a specificity of 98.27 % (793/ 807). QF-PCR amplification of STR loci had high sensitivity, strong specificity, and was simple and rapid. Thus, it might have wide clinical applications, and could be an ideal tool for large-scale genetic and prenatal diagnosis of ES.

      • KCI등재

        A Hybrid Energy Storage System for an Electric Vehicle and Its Effectiveness Validation

        Chunhua Zheng,Yafei Wang,Zhongxu Liu,Tianfu Sun,Namwook Kim,Jongryeol Jeong,차석원 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.6

        A hybrid energy storage system (HESS), which consists of a battery and a supercapacitor, presents good performances on both the power density and the energy density when applying to electric vehicles. In this research, an HESS is designed targeting at a commercialized EV model and a driving condition-adaptive rule-based energy management strategy (EMS) is proposed for the HESS, which takes into account the superiority achievement of each ESS and also the protection to each ESS. The effectiveness of the HESS plus the EMS compared to the single battery case is validated by both the computer simulation and the semi-physical rapid control prototype (RCP) test bench. An electric loading equipment is adopted in the RCP experiment validation for simulating the vehicle driving cycle instead of the traditional combination of a motor and a dynamometer. Both validation results show that compared to the single battery case, the working status of the battery is stabilized by the addition of the supercapacitor in the HESS case during both the propelling and regeneration modes and the battery energy is also saved. A dynamic degradation model for the battery is adopted in order to evaluate the life cycle cost of the HESS. Results show that the HESS plus the EMS has the effect of prolonging the battery lifetime and the HESS is economically effective compared to the single battery case.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼