RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Biomaterials in Spinal Implants: A Review

        Andrew Warburton,Steven J. Girdler,Christopher M. Mikhail,Amy Ahn,Samuel K. Cho 대한척추신경외과학회 2020 Neurospine Vol.17 No.1

        The aim to find the perfect biomaterial for spinal implant has been the focus of spinal research since the 1800s. Spinal surgery and the devices used therein have undergone a constant evolution in order to meet the needs of surgeons who have continued to further understand the biomechanical principles of spinal stability and have improved as new technologies and materials are available for production use. The perfect biomaterial would be one that is biologically inert/compatible, has a Young’s modulus similar to that of the bone where it is implanted, high tensile strength, stiffness, fatigue strength, and low artifacts on imaging. Today, the materials that have been most commonly used include stainless steel, titanium, cobalt chrome, nitinol (a nickel titanium alloy), tantalum, and polyetheretherketone in rods, screws, cages, and plates. Current advancements such as 3-dimensional printing, the ProDisc-L and ProDisc-C, the ApiFix, and the Mobi-C which all aim to improve range of motion, reduce pain, and improve patient satisfaction. Spine surgeons should remain vigilant regarding the current literature and technological advancements in spinal materials and procedures. The progression of spinal implant materials for cages, rods, screws and plates with advantages and disadvantages for each material will be discussed.

      • KCI등재

        Anterior Reconstruction Techniques for Cervical Spine Deformity

        Murray Echt,Christopher Mikhail,Steven J. Girdler,Samuel K. Cho 대한척추신경외과학회 2020 Neurospine Vol.17 No.3

        Cervical spine deformity is an uncommon yet severely debilitating condition marked by its heterogeneity. Anterior reconstruction techniques represent a familiar approach with a range of invasiveness and correction potential—including global or focal realignment in the sagittal and coronal planes. Meticulous preoperative planning is required to improve or prevent neurologic deterioration and obtain satisfactory global spinal harmony. The ability to perform anterior only reconstruction requires mobility of the opposite column to achieve correction, unless a combined approach is planned. Anterior cervical discectomy and fusion has limited focal correction, but when applied over multiple levels there is a cumulative effect with a correction of approximately 6° per level. Partial or complete corpectomy has the ability to correct sagittal deformity as well as decompress the spinal canal when there is anterior compression behind the vertebral body. If pathoanatomy permits, a hybrid discectomy-corpectomy construct is favored over multilevel corpectomies. The anterior cervical osteotomy with bilateral complete uncinectomy may be necessary for angular correction of fixed cervical kyphosis, and is particularly useful in the midcervical spine. A detailed understanding of the patient’s local anatomy, careful attention to positioning, and avoiding long periods of retraction time will help prevent complications and iatrogenic injury.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼