RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Decursin and decursinol angelate: molecular mechanism and therapeutic potential in inflammatory diseases

        Shehzad, Adeeb,Parveen, Sajida,Qureshi, Munibah,Subhan, Fazli,Lee, Young Sup Springer-Verlag 2018 Inflammation research Vol.67 No.3

        <P>Epidemiological studies have shown that inflammation plays a critical role in the development and progression of various chronic diseases, including cancers, neurological diseases, hepatic fibrosis, diabetic retinopathy, and vascular diseases. Decursin and decursinol angelate (DA) are pyranocoumarin compounds obtained from the roots of Angelica gigas. Several studies have described the anti-inflammatory effects of decursin and DA. Decursin and DA have shown potential anti-inflammatory activity by modulating growth factors such as vascular endothelial growth factor, transcription factors such as signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells, cellular enzymes including matrix metalloproteinases cyclooxygenase, and protein kinases such as extracellular receptor kinase, phosphatidylinositol-3-kinase, and protein kinase C. These compounds have the ability to induce apoptosis by activating pro-apoptotic proteins and the caspase cascade, and reduced the expression of anti-apoptotic proteins such as B-cell lymphoma 2 and B-cell lymphoma-extra-large. Interaction with multiple molecular targets and cytotoxic effects, these two compounds are favorable candidates for treating various chronic inflammatory diseases such as cancers (prostate, breast, leukemia, cervical, and myeloma), rheumatoid arthritis, diabetic retinopathy, hepatic fibrosis, osteoclastogenesis, allergy, and Alzheimer's disease. We have summarized the preliminary studies regarding the biological effects of decursin and DA. In this review, we will also highlight the functions of coumarin compounds that can be translated to a clinical practice for the treatment and prevention of various inflammatory ailments.</P>

      • Application of stepwise gradients in counter-current chromatography: A rapid and economical strategy for the one-step separation of eight coumarins from Seseli resinosum

        Shehzad, O.,Khan, S.,Ha, I.J.,Park, Y.,Tosun, A.,Kim, Y.S. Elsevier 2013 Journal of chromatography A Vol.1310 No.-

        The targeted purification of compounds with a broad polarity range from traditional medicinal plants is a big challenge for counter-current chromatography (CCC). Gradient elution was introduced in CCC to address this problem. However, once a suitable solvent system is selected, the separation process requires optimization of operational parameters. The present study was conducted to optimize various operational parameters to integrate the flow rate and solvent gradients for the rapid isolation of eight coumarins from Seseli resinosum in a single run. An increase in the system temperature from 15<SUP>o</SUP>C to 35<SUP>o</SUP>C increased the stationary phase retention and solubility of the sample, whereas the operation time and viscosity of the system were decreased. The high purity of each compound was ensured by collecting the fractions from the main peaks while all the shoulder peaks were mixed and separated under the same conditions with semi-preparative CCC. GC-FID was used to analyze the components of each phase, which was prepared without presaturation to save the time and solvent consumption. Finally, eight coumarins were purified, including (1) d-laserpitin, (2) (3'S,4'S)-3'-angeloyloxy-4'-hydroxy-3',4'-dihydroseselin, (3) (+)-samidin, (4) (3'S,4'S)-3'-acetoxy-4'-angeloyloxy-3',4'-dihydroseselin, (5) deltoin (6), calipteryxin, (7) (3'S,4'S)-3',4'-disenecioyloxy-3',4'-dihydroseselin, and (8) (-)-anomalin. The present technique has successfully accomplished the goal of one-step separation of these compounds with high purity and recovery in an economic and time efficient manner.

      • KCI등재SCISCIE
      • KCI등재

        Prostaglandin E<sub>2</sub> Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

        Shehzad, Adeeb,Islam, Salman Ul,Lee, Jaetae,Lee, Young Sup Korean Society for Molecular and Cellular Biology 2014 Molecules and cells Vol.37 No.12

        Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

      • State-of-the-art separation of ginsenosides from Korean white and red ginseng by countercurrent chromatography.

        Shehzad, Omer,Kim, Hyun Pyo,Kim, Yeong Shik Springer-Verlag 2013 Analytical and bioanalytical chemistry Vol.405 No.13

        <P>Ginseng (Panax ginseng C. A. Meyer) has been one of the most popular herbs used for nutritional and medicinal purposes by the people of eastern Asia for thousands of years. Ginsenosides, the mostly widely studied chemical components of ginseng, are quite different depending on the processing method used. A number of studies demonstrate the countercurrent chromatography (CCC) separation of ginsenosides from several sources; however, there is no single report demonstrating a one-step separation of all of these ginsenosides from different sources. In the present study, we have successfully developed an efficient CCC separation methodology in which the flow-rate gradient technique was coupled with a new solvent gradient dilution strategy for the isolation of ginsenosides from Korean white (peeled off dried P. ginseng) and red ginseng (steam-treated P. ginseng). The crude samples were initially prepared by extraction with butanol and were further purified with CCC using solvent gradients composed of methylene chloride-methanol-isopropanol-water (different ratios, v/v). Gas chromatography coupled with flame ionization detector was used to analyze the components of the two-phase solvent mixture. Each phase solvent mixture was prepared without presaturation, which saves time and reduces the solvent consumption. Finally, 13 ginsenosides have been purified from red ginseng with the new technique, including Rg1, Re, Rf, Rg2, Rb1, Rb2, Rc, Rd, Rg3, Rk1, Rg5, Rg6, and F4. Meanwhile, eight ginsenosides have been purified from white ginseng, including Rg1, Re, Rf, Rh1, Rb1, Rb2, Rc, and Rd by using a single-solvent system. Thus, the present technique could be used for the purification of ginsenosides from all types' ginseng sources. To our knowledge, this is the first report involving the separation of ginsenoside Rg2 and Rg6 and the one-step separation of thirteen ginsenosides from red ginseng by CCC.</P>

      • SCISCIESCOPUS

        Multifunctional Polymeric Nanocurcumin for Cancer Therapy

        Shehzad, A.,Ul-Islam, M.,Wahid, F.,Lee, Y.S. American Scientific Publishers 2014 Journal of nanoscience and nanotechnology Vol.14 No.1

        Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble systemic drugs. Curcumin, a yellow pigment isolated from turmeric, possesses a wide range of pharmacological activities, including anticancer effects. The anticancer potential of curcumin is mediated through the inhibition and modulation of several intracellular signaling pathways, as confirmed in various in vitro and in vivo cancer studies. However, clinical application of dietary curcumin for the treatment of cancer and other chronic diseases have been hindered by poor bioavailability, due to low systemic solubility as well as rapid metabolism and elimination from the body. Different techniques for sustained and efficient curcumin delivery, including nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles are the focus of this study. Previous studies have shown that nanocurcumin has improved anticancer effects as compared to normal curcumin formulations. Among nanoformulations, few composite nanosystems have the simultaneous properties of therapeutic activity and multifunctional nanoparticles as enhanced image contrast agents. We also address the challenges to the development of nanocurcumin delivery platforms by enhancing a steady aqueous dispersion state. Further studies are needed using preclinical and clinical cancer models to recommend nanocurcumin as a drug of choice for cancer therapy.

      • SCISCIESCOPUS

        Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal

        Shehzad, Muhammad Arslan,Hussain, Sajjad,Lee, Junsu,Jung, Jongwan,Lee, Naesung,Kim, Gunn,Seo, Yongho American Chemical Society 2017 NANO LETTERS Vol.17 No.3

        <P>Direct observation of grains and boundaries is a vital factor in altering the electrical and optoelectronic properties of transition metal dichalcogenides (TMDs), that is, MoSe2, and WSe2. Here, we report visualization of grains and boundaries of chemical vapor deposition grown MoSe2 and WSe2 on silicon, using optical birefringence of two-dimensional layer covered with nematic liquid crystal (LC). An in-depth study was performed to determine the alignment orientation of LC molecules and their correlation with other grains. Interestingly, we found that alignment of liquid crystal has discrete preferential orientations. From computational simulations, higher adsorption energy for the armchair direction was found to force LC molecules to align on it, compared to that of the zigzag direction. We believe that these TMDs with three-fold symmetric alignment could be utilized for display applications.</P>

      • SCIESCOPUS

        Curcumin in various cancers.

        Shehzad, Adeeb,Lee, Jaetae,Lee, Young Sup Published for International Union of Biochemistry 2013 Biofactors Vol.39 No.1

        <P>Curcumin (diferuloylmethane), an active constituent of turmeric, is a well-described phytochemical, which has been used since ancient times for the treatment of various diseases. The dysregulation of cell signaling pathways by the gradual alteration of regulatory proteins is the root cause of cancers. Curcumin modulates regulatory proteins through various molecular mechanisms. Several research studies have provided in-depth analysis of multiple targets through which curcumin induces protective effects against cancers including gastrointestinal, genitourinary, gynecological, hematological, pulmonary, thymic, brain, breast, and bone. The molecular mechanisms of action of curcumin in treating different types of cancers remain under investigation. The multifaceted role of this dietary agent is mediated through its inhibition of several cell signaling pathways at multiple levels. Curcumin has the ability to inhibit carcinogenicity through the modulation of the cell cycle by binding directly and indirectly to molecular targets including transcription factors (NF-kB, STAT3, β-catenin, and AP-1), growth factors (EGF, PDGF, and VEGF), enzymes (COX-2, iNOS, and MMPs), kinases (cyclin D1, CDKs, Akt, PKC, and AMPK), inflammatory cytokines (TNF, MCP, IL-1, and IL-6), upregulation of proapoptotic (Bax, Bad, and Bak) and downregulation of antiapoptotic proteins (Bcl(2) and Bcl-xL). A variety of animal models and human studies have proven that curcumin is safe and well tolerated even at very high doses. This study elaborates the current understanding of the chemopreventive effects of curcumin through its multiple molecular pathways and highlights its therapeutic value in the treatment and prevention of a wide range of cancers.</P>

      • A progressive route for tailoring electrical transport in MoS2

        Shehzad, M. A.,Hussain, S.,Khan, M. F.,Eom, J.,Jung, J.,Seo, Y. Springer Science + Business Media 2016 NANO RESEARCH Vol.9 No.2

        <P>Typically, molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD) is polycrystalline; as a result, the scattering of charge carriers at grain boundaries can lead to performances lower than those observed in exfoliated single-crystal MoS2. Until now, the electrical properties of grain boundaries have been indirectly studied without accurate knowledge of their location. Here, we present a technique to measure the electrical behavior of individual grain boundaries in CVD-grown MoS2, imaged with the help of aligned liquid crystals. Unexpectedly, the electrical conductance decreased by three orders of magnitude for the grain boundaries with the lowest on/off ratio. Our study provides a useful technique to fabricate devices on a single-crystal area, using optimized growth conditions and device geometry. The photoresponse, studied within a MoS2 single grain, showed that the device responsivity was comparable with that of the exfoliated MoS2-based photodetectors.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼