RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Research Trends in the Directed Energy Deposition Method of Heterogeneous Materials

        Raj Narayan Hajra,Jeoung Han Kim 대한용접·접합학회 2024 대한용접·접합학회지 Vol.42 No.1

        Metal Additive Manufacturing (AM) or 3D printing garners attention for economically producing components with superior strength, durability, and corrosion resistance. The microstructure, influenced by factors like heat input, scanning speed, and layer thickness, shapes metal materials intricately in 3D printing.Unlike traditional manufacturing with separate fabrication and post-processing, Multi Materials AM (MM-AM) streamlines the construction of composite structures in a single step using a single machine. Although initial MM-AM, especially inpolymer 3D printing, was simpler, the shift to metal-based MM-AM presents challenges. The distinctive bonding style in MM-AM facilitates robust connections between different metals, minimizing stress concentration and simplifying the joining of diverse metals. Challenges like intermetallic compound formation, residual stress, and material-specific issues leading to cracks persist. Ongoing research focuses on metallurgy, process optimization,and computational simulation to overcome these hurdles. This review delves into current research trends in multi-material AM, identifying pathways for technological advancements. It discusses the application of Directed Energy Deposition (DED)in stacking austenitic and ferritic metals for nuclear power plant cooling system piping’s gradient-form safe-ends. The study emphasizes advanced manufacturing techniques for developing functionally graded materials and dissimilar metal joints, highlighting the transformative potential of additive manufacturing across industries.

      • KCI등재

        Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)

        Gargi Roy,Raj Narayan Hajra,Woo Hyeok Kim,Jongwon Lee,Sangwoo Kim,Jeoung Han Kim 한국분말재료학회(구 한국분말야금학회) 2024 한국분말재료학회지 (KPMI) Vol.31 No.1

        This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼