RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of an Arabidopsis Nodulin-Related Protein in Heat Stress

        Fu, Qiantang,Li, Shujia,Yu, Diqiu Korean Society for Molecular and Cellular Biology 2010 Molecules and cells Vol.29 No.1

        We identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42$^{\circ}C$) and induced by low temperature (4$^{\circ}C$) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques. To study AtNRP1 biological functions, we have characterized both loss-of-function T-DNA insertion and transgenic overexpression plants for AtNRP1 in Arabidopsis. The T-DNA insertion mutants displayed no obvious difference as compared to wild-type Arabidopsis under heat stress, but the significant enhanced susceptibility to heat stress was revealed in two independent AtNRP1-overexpressing transgenic lines. Further study found that the decreased thermtolerance in AtNRP1-overexpressing lines accompanied significantly decreased accumulation of ABA after heat treatment, which was probably due to AtNRP1 playing a role in negative-feedback regulation of the ABA synthesis pathway. These results support the viewpoint that the application of ABA inhibits nodulation and nodulin-related gene expression and threaten adverse ambient temperature can impact the nodulin-related gene expression.

      • KCI등재

        An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection

        Qiantang Fu,Chaoqiong Li,Mingyong Tang,Yan-Bin Tao,Bang-Zhen Pan,Lu Zhang,Longjian Niu,Huiying He,Xiulan Wang,Zeng-Fu Xu 한국식물생명공학회 2015 Plant biotechnology reports Vol.9 No.6

        Jatropha curcas is considered a potential biodiesel feedstock crop. Currently, the value of J. curcas is limited because its seed yield is generally low. Transgenic modification is a promising approach to improve the seed yield of J. curcas. Although Agrobacterium-mediated genetic transformation of J. curcas has been pursued for several years, the transformation efficiency remains unsatisfying. Therefore, a highly efficient and simple Agrobacterium-mediated genetic transformation method for J. curcas should be developed. We examined and optimized several key factors that affect genetic transformation of J. curcas in this study. The results showed that the EHA105 strain was superior to the other three Agrobacterium tumefaciens strains for infecting J. curcas cotyledons, and the supplementation of 100 mM acetosyringone slightly increased the transient transformation frequency. Use of the appropriate inoculation method, optimal kanamycin concentration and appropriate duration of delayed selection also improved the efficiency of stable genetic transformation of J. curcas. The percentage of b-glucuronidase positive J. curcas shoots reached as high as 56.0 %, and 1.70 transformants per explant were obtained with this protocol. Furthermore, we optimized the root-inducing medium to achieve a rooting rate of 84.9 %. Stable integration of the T-DNA into the genomes of putative transgenic lines was confirmed by PCR and Southern blot analysis. Using this improved protocol, a large number of transgenic J. curcas plantlets can be routinely obtained within approximately 4 months. The detailed information provided here for each step of J. curcas transformation should enable successful implementation of this transgenic technology in other laboratories.

      • KCI등재

        Identification of an Arabidopsis Nodulin-Related Protein in Heat Stress

        Qiantang Fu,Shujia Li,Diqiu Yu 한국분자세포생물학회 2010 Molecules and cells Vol.29 No.1

        We identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42°C) and induced by low temperature (4°C) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques. To study AtNRP1 biological functions, we have characterized both loss-of-function T-DNA insertion and transgenic overexpression plants for AtNRP1 in Arabidopsis. The T-DNA insertion mutants displayed no obvious difference as compared to wild-type Arabidopsis under heat stress, but the significant enhanced suscepti-bility to heat stress was revealed in two independent AtNRP1-overexpressing transgenic lines. Further study found that the decreased thermtolerance in AtNRP1-overexpressing lines accompanied significantly decreased accumulation of ABA after heat treatment, which was probably due to AtNRP1 playing a role in negative-feedback regulation of the ABA synthesis pathway. These results support the viewpoint that the application of ABA inhibits nodulation and nodulin-related gene expression and threaten adverse ambient temperature can impact the nodulin-related gene expression.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼