RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Role of Low-Frequency Electromagnetic Fields on Mesenchymal Stem Cells Differentiation: A Systematic Review

        Safavi Atiyeh Sadat,Sendera Anna,Haghighipour Nooshin,Banas-Zabczyk Agnieszka 한국조직공학과 재생의학회 2022 조직공학과 재생의학 Vol.19 No.6

        BACKGROUND Low-frequency electromagnetic fields (EMFs) influence biological processes. This present study was aimed at the scientific literature on the use of EMFs in the mesenchymal stem cell differentiation process. MATERIALS AND METHODS The electronic search was carried out in PubMed and Web of Science, a database with a combination of the sinusoidal and pulsed low- and extremely low-frequency electromagnetic fields stimulation and mesenchymal stem cells differentiation, considering the period of publication until December 2021. The literature search identified 118 references in PubMed and Web of Science of which 46 articles were selected, respectively, according to the eligibility requirements. CONCLUSION The analysis of research indicated that EMFs are an easy-to-apply and practical way in cell therapy and tissue engineering when regulation of stem cells is required. Studies have shown that EMFs have positive effects on stem cell differentiation, accelerating its process regardless of the parameters and type of stem cells. However, the exact amplitude, frequency, duration of the electrical field, and application method remain elusive and need more study in future work.

      • The effect of collagen/polycaprolactone fibrous scaffold decorated with graphene nanoplatelet and low-frequency electromagnetic field on neuronal gene expression by stem cells

        Moraveji, Marzie,Keshvari, Hamid,Karkhaneh, Akbar,Bonakdar, Shahin,Hadi, Amin,Haghighipour, Nooshin Techno-Press 2021 Advances in nano research Vol.10 No.6

        This study aimed to develop a collagen/polycaprolactone (CP) fibrous scaffold decorated with Graphene (Gr) nanoplatelets (Gr-CP). In previous studies, accessibility of cells to the surface of Gr nanoplatelet was missed. Nanofibers were prepared by electrospinning which sprayed Gr nanoplatelets (1 wt.%) to synthesize the Gr-CP scaffold. Fourier transform infrared spectroscopy (FTIR) was utilized for investigation of chemical structure. Tensile tests were performed to study the influence of Gr on the mechanical properties of scaffolds. Cell differentiation was analyzed based on MAP2 and TUJ1 expression levels using real-time PCR technique in 6 groups. The variables examined in this experiment was the neural differentiating chemical medium, low-frequency electromagnetic field (LFEMF; 50Hz, 1mT) and Gr. Based on the results, Young's modulus, tensile strength and work of fracture ratio of the Gr-CP were 1.68, 2.41 and 1.42 times higher than those of the CP scaffold, respectively. MTT assay outcomes were indicative of scaffold cytocompatibility. The group treated with all three factors exhibited the highest MAP2 expression level compared to other groups. Based on the obtained results, exposing stem cells to the combined treatment of Gr and LFEMF can be used as a promising method to induce neuronal differentiation.

      • KCI등재

        Induction of Chondrogenic Differentiation in Human Mesenchymal Stem Cells Cultured on Human Demineralized Bone Matrix Scaffold under Hydrostatic Pressure

        Saeid Reza Shahmoradi,Maryam Kabir Salmani,Hamid Reza Soleimanpour,Amir Hossein Tavakoli,Kazem Hosaini,Nooshin Haghighipour,Shahin Bonakdar 한국조직공학과 재생의학회 2019 조직공학과 재생의학 Vol.16 No.1

        BACKGROUND: Articular cartilage damage is still a troublesome problem. Hence, several researches have been performed for cartilage repair. The aim of this study was to evaluate the chondrogenicity of demineralized bone matrix (DBM) scaffolds under cyclic hydrostatic pressure (CHP) in vitro. METHODS: In this study, CHP was applied to human bone marrow mesenchymal stem cells (hBMSCs) seeded on DBM scaffolds at a pressure of 5 MPa with a frequency of 0.5 Hz and 4 h per day for 1 week. Changes in chondrogenic and osteogenic gene expressions were analyzed by quantifying mRNA signal level of Sox9, collagen type I, collagen type II, aggrecan (ACAN), Osteocalcin, and Runx2. Histological analysis was carried out by hematoxylin and eosin, and Alcian blue staining. Moreover, DMMB and immunofluorescence staining were used for glycosaminoglycan (GAG) and collagen type II detection, respectively. RESULTS: Real-time PCR demonstrated that applying CHP to hBMSCs in DBM scaffolds increased mRNA levels by 1.3-fold, 1.2-fold, and 1.7-fold (p\0.005) for Sox9, Col2, and ACAN, respectively by day 21, whereas it decreased mRNA levels by 0.7-fold and 0.8-fold (p\0.05) for Runx2 and osteocalcin, respectively. Additionally, in the presence of TGF-b1 growth factor (10 ng/ml), CHP further increased mRNA levels for the mentioned genes (Sox9, Col2, and ACAN) by 1.4-fold, 1.3-fold and 2.5-fold (p\0.005), respectively. Furthermore, in histological assessment, it was observed that the extracellular matrix contained GAG and type II collagen in scaffolds under CHP and CHP with TGF-b1, respectively. CONCLUSION: The osteo-inductive DBM scaffolds showed chondrogenic characteristics under hydrostatic pressure. Our study can be a fundamental study for the use of DBM in articular cartilage defects in vivo and lead to production of novel scaffolds with two different characteristics to regenerate both bone and cartilage simultaneously.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼