RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Determination of length scale parameters of strain gradient continuum theory for crystalline solids using a computational quantum mechanical model based on density functional theory

        Moosaie Iman,Mostofinejad Davood,Shojaee Saeed 한국물리학회 2022 Current Applied Physics Vol.36 No.-

        Although the classical continuum theory is advantageous in finding solutions to a wide range of engineering problems, it cannot describe some phenomena such as dispersion of acoustic waves, effects of surfaces and interfaces on the mechanical behavior of small-scale structures, and microstructure contribution in special materials. Owing to this fact, several enhanced continuum theories have evolved in the literature. However, the difficulty in determination of the length scale parameters that appear in the governing equations of such theories hampers their widespread use in practice. To date, except for a very limited number of materials, there is no known experimental procedure for the identification of these parameters. In this research, the internal length scales for an augmented continuum theory, i.e., Mindlin’s strain gradient theory, have been theoretically determined for some crystalline materials with cubic structure that are of engineering interest, using ab initio DFT. According to the values obtained for these parameters, it can be perceived that the strain gradient theory is a valuable tool for capturing the size effects at even the smallest scales comparable to the dimensions of a unit cell of a crystal lattice.

      • Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams

        Shomali, Amir,Mostofinejad, Davood,Esfahani, Mohammad Reza Techno-Press 2019 Advances in concrete construction Vol.8 No.2

        The present experimental study addresses the structural response of reinforced concrete (RC) beams strengthened in shear. Thirteen RC beams were divided into four different sets to investigate the effect of transverse and longitudinal steel reinforcement ratios, concrete compressive strength change and orientation for installing carbon fiber-reinforced polymer (CFRP) laminates. Then, we employed a shear strengthening solution through externally bonded reinforcement in grooves (EBRIG) and externally bonded reinforcement (EBR) techniques. In this regard, rectangular beams of $200{\times}300{\times}2000mm$ dimensions were subjected to the 4-point static loading condition and their load-displacement curves, load-carrying capacity and ductility changes were compared. The results revealed that using EBRIG method, the gain percentage augmented with the increase in the longitudinal reinforcement ratio. Also, in the RC beams with stirrups, the gain in shear strength decreased as transverse reinforcement ratio increased. The results also revealed that the shear resistance obtained by the experimental tests were in acceptable agreement with the design equations. Besides, the results of this research indicated that using the EBRIG system through vertical grooves in RC beams with and without stirrups caused the energy absorption to increase about 85% and 97%, respectively, relative to the control.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼