RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical Study on the Wall to Bed Heat Transfer in a Conical Fluidized Bed Combustor

        Hamada Mohamed Abdelmotalib,Mahmoud Abdelftah Youssef,Ali Ahmed Hassan,윤석범,임익태 한국정밀공학회 2015 International Journal of Precision Engineering and Vol. No.

        In this work a numerical investigation of wall to bed heat transfer, and the related flow characteristics, was conducted along a conical fluidized bed combustor with a height of 0.8 m and a cone angle of 30o. A two-fluid Eulerian-Eulerian model was used while applying Kinetic Theory for Granular Flow (KTGF) to a wall-to-bed FB reactor. The heat transfer coefficient and hydrodynamics are discussed for two different drag models, namely the Gidaspow and Syamlal-O’Brien models. Furthermore, computational calculations were carried out for a variety of inlet velocities(1.4Umf~4 Umf) and different particle sizes. The heat transfer coefficient in the bed region was evaluated and compared with that calculated by penetration theory. The bed expansion for the two models was compared with that calculated using correlations from literature in order to validate the numerical calculations. The heat transfer coefficient was found to be increasing with increasing gas velocity and decreasing with increasing particle diameter.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼