RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms

        ( Sanaa M. F. Gad El-rab ),( Sakeenabi Basha ),( Amal A. Ashour ),( Enas Tawfik Enan ),( Amal Ahmed Alyamani ),( Nayef H. Felemban ) 한국미생물 · 생명공학회 2021 Journal of microbiology and biotechnology Vol.31 No.12

        Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 μg/ml, 4-5 μg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.

      • KCI등재

        Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

        ( Sanaa M. F. Gad El-rab ),( Eman M. Halawani ),( Aziza M. Hassan ) 한국미생물생명공학회(구 한국산업미생물학회) 2018 Journal of microbiology and biotechnology Vol.28 No.9

        Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum β-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBLproducing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and 4 μg/ml, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of 0.1 μg/ml medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.

      • SCISCIESCOPUS

        Electricity generation from rice straw using a microbial fuel cell

        Hassan, S.H.A.,Gad El-Rab, S.M.F.,Rahimnejad, M.,Ghasemi, M.,Joo, J.H.,Sik-Ok, Y.,Kim, I.S.,Oh, S.E. Pergamon Press ; Elsevier Science Ltd 2014 International journal of hydrogen energy Vol.39 No.17

        This study demonstrated electricity generation from rice straw without pretreatment in a two-chambered microbial fuel cell (MFC) inoculated with a mixed culture of cellulose-degrading bacteria (CDB). The power density reached 145 mW/m<SUP>2</SUP> with an initial rice straw concentration of 1 g/L; while the coulombic efficiencies (CEs) ranged from 54.3 to 45.3%, corresponding to initial rice straw concentrations of 0.5-1 g/L. Stackable MFCs in series and parallel produced an open circuit voltage of 2.17 and 0.723 V, respectively, using hexacyanoferrate as the catholyte. The maximum power for serial connection of three stacked MFCs was 490 mW/m<SUP>2</SUP> (0.5 mA). In parallelly stacked MFCs, the current levels were approximately 3-fold (1.5 mA) higher than those produced from the serial connection. These results demonstrated that electricity can be produced from rice straw by exploiting CDB as the biocatalyst. Thus, this method provides a promising way to utilize rice straw for bioenergy production.

      • KCI등재

        EXPERIMENTAL STUDY OF THE FLOW INDUCED BY A VEHICLE FAN AND THE EFFECT OF ENGINE BLOCKAGE IN A SIMPLIFIED MODEL

        M. KHALED,M. GAD EL RAB,F. HACHEM,H. ELHAGE,A. ELMARAKBI,F. HARAMBAT,H. PEERHOSSAINI 한국자동차공학회 2016 International journal of automotive technology Vol.17 No.4

        Fans are often tested without downstream blockage and, thus, the performance is considerably different when the fan is mounted in a vehicle as part of a cooling system and where high blockage effect is present downstream. The aim of the present work is to analyze by laser Doppler velocimetry LDV measurements the topology of the flow induced by a fan incorporated in a simplified underhood model reproducing engine blockage and to study the blockage effect of the engine positioning on the flow induced by the fan. The distance between the fan and the engine block affects the mean flow axial velocity U. The vertical velocity component W is greatly influenced by the variation of the distance between the fan and the engine block, both in magnitude and topology.

      • KCI등재

        Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

        Abo-Amer Aly E.,Gad El-Rab Sanaa M. F.,Halawani Eman M.,Niaz Ameen M.,Bamaga Mohammed S. 한국미생물·생명공학회 2022 Journal of microbiology and biotechnology Vol.32 No.12

        Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼