RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of bridge lateral deformation on track geometry of high-speed railway

        Hongye Gou,Longcheng Yang,Dan Leng,Yi Bao,Qianhui Pu 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.29 No.2

        This paper presents an analytical model to analyze the mapping relationship between bridge lateral deformation and track geometry of high-speed railway. Based on the rail deformation mechanisms, the deformation of track slab and rail at the locations of fasteners are analyzed. Formulae of rail lateral deformation are derived and validated against a finite element model. Based on the analytical model, a rail deformation extension coefficient is presented, and effects of different lateral deformations on track geometry are evaluated. Parametric studies are conducted to evaluate the effects of the deformation amplitude, fastener stiffness and mortar layer stiffness on the rail deformation. The rail deformation increases with the deformation of the girder, and is dependent on the spacing of the fasteners, the elastic modulus of the rail's material, and the moment of inertia of the rail's section.

      • KCI등재

        Segmented Douglas-Peucker Algorithm Based on the Node Importance

        ( Xiaofei Wang ),( Wei Yang ),( Yan Liu ),( Rui Sun ),( Jun Hu ),( Longcheng Yang ),( Boyang Hou ) 한국인터넷정보학회 2020 KSII Transactions on Internet and Information Syst Vol.14 No.4

        Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.

      • KCI등재

        Mapping vertical bridge deformations to track geometry for high-speed railway

        Hongye Gou,Zhiwen Ran,Longcheng Yang,Yi Bao,Qianhui Pu 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.32 No.4

        Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

      • KCI등재

        Solidification of uranium mill tailings by MBS-MICP and environmental implications

        Niu Qianjin,Li Chunguang,Liu Zhenzhong,Li Yongmei,Meng Shuo,He Xinqi,Liu Xinfeng,Wang Wenji,He Meijiao,Yang Xiaolei,Liu Qi,Liu Longcheng 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.10

        Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity

      • KCI등재

        Bus voltage control of residential PV-HESS-grids using multimodal simplification

        Long Cheng,Baoshun Yang,Chao Yang,Yan Hong 전력전자학회 2024 JOURNAL OF POWER ELECTRONICS Vol.24 No.1

        This paper presents a residential power system that mainly includes photovoltaic (PV) panels, a hybrid energy storage system (HESS), a grid, and converters. The multimodal operation caused by the large number of states for each of the units increases the complexity of the system operation. It is difficult to adjust the operation state in the face of emergencies. A multimodal simplification method is proposed to simplify multimodal operation into three dominant modes (PV, HESS, and load) according to an energy management flowchart. A novel control strategy is proposed to realize the internal power distribution of the HESS, as well as the power allocation between the HESS and a single-phase full-bridge converter (SFC), while smoothing the double fluctuation of the bus voltage caused by the SFC. The effectiveness of the proposed multimodal simplification and control strategy is verified through the simulation and experimental results from a PV-HESS-grid.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼